精英家教网 > 高中数学 > 题目详情

对于函数,若存在,使,则称的一
个"不动点".已知二次函数
(1)当时,求函数的不动点;
(2)对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若的图象上两点的横坐标是的不动点,
两点关于直线对称,求的最小值.

(1)(2)(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知
(1)求函数的最大值; (2)求使成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)幂函数过点(2,4),求出的解析式并用单调性定义证明上为增函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数,对任意的,有
,且.
(1) 求证:;     (2)求证:是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数是奇函数.
(1)求的值;      
(2)证明上为减函数.
(3)若对于任意,不等式恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三次函数的导函数为实数。
(Ⅰ)若曲线在点()处切线的斜率为12,求的值;
(Ⅱ)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求当m为何值时,f(x)=x2+2mx+3m+4.
(1)有且仅有一个零点;(2)有两个零点且均比-1大;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的定义域为,对于任意正实数恒有,且当时,
(1)求的值;    
(2)求证:上是增函数;
(3)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,证明在区间上是增函数;
(2)若在区间上是单调函数,试求实数的取值范围。

查看答案和解析>>

同步练习册答案