精英家教网 > 高中数学 > 题目详情

定义在R上的函数,对任意的,有
,且.
(1) 求证:;     (2)求证:是偶函数.

(1)证明略
(2)证明略

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是关于的方程的两根,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知是一次函数,且满足:,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数是定义域为R的偶函数,其图像均在x轴的上方,对任意的,都有,且,又当时,为增函数。
(1)求的值;
(2)对于任意正整数,不等式:恒成立,求实数的取值
范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知,且.
(1)求实数的值;
(2)求函数的单调递增区间及最大值,并指出取得最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题14分)
已知函数定义域为,且满足.
(Ⅰ)求解析式及最小值;
(Ⅱ)求证:。        
(Ⅲ)设。求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若存在,使,则称的一
个"不动点".已知二次函数
(1)当时,求函数的不动点;
(2)对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若的图象上两点的横坐标是的不动点,
两点关于直线对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)如果对任意恒成立,求实数a的取值范围;
(II)设函数的两个极值点分别为判断下列三个代数式:
中有几个为定值?并且是定值请求出;
若不是定值,请把不是定值的表示为函数并求出的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数.
(1)当时,判断函数的奇偶性,并说明理由;
(2)当时,指出函数的单调区间(不要过程);
(3)是否存在实数,使得在闭区间上的最大值为2.若存在,求出的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案