精英家教网 > 高中数学 > 题目详情

(本大题14分)
已知函数定义域为,且满足.
(Ⅰ)求解析式及最小值;
(Ⅱ)求证:。        
(Ⅲ)设。求证:.

(1)
(2)见解析;(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数的最大值为.
(1)设,求的取值范围;
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知
(1)判断函数的奇偶性;
(2) 判断函数的单调性,并证明;
(3)当函数的定义域为时,求使成立的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知函数, 其反函数为
(1) 若的定义域为,求实数的取值范围;
(2) 当时,求函数的最小值
(3) 是否存在实数,使得函数的定义域为,值域为,若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数,对任意的,有
,且.
(1) 求证:;     (2)求证:是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知函数f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .
(Ⅰ) 试讨论函数f (x )的单调性;
(Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三次函数的导函数为实数。
(Ⅰ)若曲线在点()处切线的斜率为12,求的值;
(Ⅱ)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数.(1)求的单调区间;(2)当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且f(1)=f(2)=.(1)求;(2)判断fx)的奇偶性;(3)试判断函数在上的单调性,并证明。

查看答案和解析>>

同步练习册答案