精英家教网 > 高中数学 > 题目详情

已知函数,且f(1)=f(2)=.(1)求;(2)判断fx)的奇偶性;(3)试判断函数在上的单调性,并证明。

解:(1)由已知得:
,解得
(2)由上知.任取,则,所以为偶函数.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本大题14分)
已知函数定义域为,且满足.
(Ⅰ)求解析式及最小值;
(Ⅱ)求证:。        
(Ⅲ)设。求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)判断的奇偶性;
(Ⅱ)设函数在区间上的最小值为,求的表达式;
(Ⅲ)若,证明:方程有两个不同的正数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数
(1)用定义证明:函数是R上的增函数;(6分)
(2)证明:对任意的实数t,都有;(4分)
(3)求值:。(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数.
(1)当时,判断函数的奇偶性,并说明理由;
(2)当时,指出函数的单调区间(不要过程);
(3)是否存在实数,使得在闭区间上的最大值为2.若存在,求出的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域
(2)求函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知定义在R上的函是奇函数
(1)求的值;
(2)判断的单调性,并用单调性定义证明;
(3)若对任意的,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知定义域为的函数满足.
(1)若,求;又若,求
(2)设有且仅有一个实数,使得,求函数的解析表达式.

查看答案和解析>>

同步练习册答案