精英家教网 > 高中数学 > 题目详情

(本小题12分)
已知定义在R上的函是奇函数
(1)求的值;
(2)判断的单调性,并用单调性定义证明;
(3)若对任意的,不等式恒成立,求实数的取值范围。

解:(1)∵是定义在R上的奇函数,∴,∴  1分

对一切实数都成立,
                                     3分
(2)在R上是减函数            4分
证明:设

,∴,∴
,∴在R上是减函数                 8分
(3)不等式     
是R上的减函数,      ∴             10分
恒成立   ∴      12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知三次函数的导函数为实数。
(Ⅰ)若曲线在点()处切线的斜率为12,求的值;
(Ⅱ)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知Z)是奇函数,又,
的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且f(1)=f(2)=.(1)求;(2)判断fx)的奇偶性;(3)试判断函数在上的单调性,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,证明在区间上是增函数;
(2)若在区间上是单调函数,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f (x)=x 2+ax ,且对任意的实数x都有f (1+x)=f (1-x) 成立.
(1)求实数 a的值;
(2)利用单调性的定义证明函数f(x)在区间[1,+∞上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知二次函数的最小值为1,且.
(1)求的解析式;  
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图象恒在的图象上方,试确定实数取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图,函数y=|x|在x∈[-1,1]的图象上有两点A、B,AB∥
Ox轴,点M(1,m)(m是已知实数,且m>)是△ABC的边BC的中点。
(Ⅰ)写出用B的横坐标t表示△ABC面积S的函数解析式S=f(t);
(Ⅱ)求函数S=f(t)的最大值,并求出相应的C点坐标。

查看答案和解析>>

同步练习册答案