精英家教网 > 高中数学 > 题目详情

(12分)设函数.(1)求的单调区间;(2)当时,求函数在区间上的最小值.

(1)函数的单调递增区间为,单调递减区间为
(2)当时,;当时,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为 (a∈R).
(1)求f(x)在[-1,0]上的解析式;
(2)求f(x)在[0,1]上的最大值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题14分)
已知函数定义域为,且满足.
(Ⅰ)求解析式及最小值;
(Ⅱ)求证:。        
(Ⅲ)设。求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x+4x+3,g(x)为一次函数,若f(g(x))=x+10x+24,求g(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)如果对任意恒成立,求实数a的取值范围;
(II)设函数的两个极值点分别为判断下列三个代数式:
中有几个为定值?并且是定值请求出;
若不是定值,请把不是定值的表示为函数并求出的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)判断的奇偶性;
(Ⅱ)设函数在区间上的最小值为,求的表达式;
(Ⅲ)若,证明:方程有两个不同的正数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数
(1)用定义证明:函数是R上的增函数;(6分)
(2)证明:对任意的实数t,都有;(4分)
(3)求值:。(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
对于每个实数,设三个函数中的最小值,用分段函数写出的解析式,并求的最大值.

查看答案和解析>>

同步练习册答案