精英家教网 > 高中数学 > 题目详情

定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为 (a∈R).
(1)求f(x)在[-1,0]上的解析式;
(2)求f(x)在[0,1]上的最大值h(a).

解: (1) x∈[0,1].
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的减函数,且,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数的最大值为.
(1)设,求的取值范围;
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
⑴求函数的定义域
⑵求函数的值域。
⑶求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数
(Ⅰ)用分段函数的形式表示该函数;
(Ⅱ)画出该函数的图象;
(Ⅲ)根据图象,写出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R,满足:①
②对任意实数,有.
(Ⅰ)求的值;
(Ⅱ)判断函数的奇偶性与周期性,并求的值;
(Ⅲ)是否存在常数,使得不等式对一切实数成立.如果存在,求出常数的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知
(1)判断函数的奇偶性;
(2) 判断函数的单调性,并证明;
(3)当函数的定义域为时,求使成立的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知函数, 其反函数为
(1) 若的定义域为,求实数的取值范围;
(2) 当时,求函数的最小值
(3) 是否存在实数,使得函数的定义域为,值域为,若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数.(1)求的单调区间;(2)当时,求函数在区间上的最小值.

查看答案和解析>>

同步练习册答案