精英家教网 > 高中数学 > 题目详情

已知定义域为R,满足:①
②对任意实数,有.
(Ⅰ)求的值;
(Ⅱ)判断函数的奇偶性与周期性,并求的值;
(Ⅲ)是否存在常数,使得不等式对一切实数成立.如果存在,求出常数的值;如果不存在,请说明理由.

解:(Ⅰ).                .
(Ⅱ).
(Ⅲ)存在常数,使得不等式对一切实数成立,且为满足题设的唯一一组值.      

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)用定义证明:不论为何实数上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明函数是奇函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(不计入总分):已知函数,设函数
(3)当a≠0时,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为 (a∈R).
(1)求f(x)在[-1,0]上的解析式;
(2)求f(x)在[0,1]上的最大值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数,
(1)求证:不论为何实数在定义域上总为增函数;
(2)确定的值,使为奇函数;
(3)当为奇函数时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的定义域是,且对任意不为零的实数x都满足 =.已知当x>0时
(1)求当x<0时,的解析式  (2)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线方程为
(Ⅰ)求的值;
(Ⅱ)证明:当,且时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
对于每个实数,设三个函数中的最小值,用分段函数写出的解析式,并求的最大值.

查看答案和解析>>

同步练习册答案