设的定义域是,且对任意不为零的实数x都满足 =.已知当x>0时
(1)求当x<0时,的解析式 (2)解不等式.
科目:高中数学 来源: 题型:解答题
已知定义域为R,满足:①;
②对任意实数,有.
(Ⅰ)求,的值;
(Ⅱ)判断函数的奇偶性与周期性,并求的值;
(Ⅲ)是否存在常数,使得不等式对一切实数成立.如果存在,求出常数的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
.已知函数, 其反函数为
(1) 若的定义域为,求实数的取值范围;
(2) 当时,求函数的最小值;
(3) 是否存在实数,使得函数的定义域为,值域为,若存在,求出、的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
已知函数f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .
(Ⅰ) 试讨论函数f (x )的单调性;
(Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)若,,,为常
数,且
(Ⅰ)求对所有实数成立的充要条件(用表示);
(Ⅱ)设为两实数,且,若
求证:在区间上的单调增区间的长度和为(闭区间的长度定义为).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com