精英家教网 > 高中数学 > 题目详情

已知函数是定义在上的减函数,且,求实数的取值范围。

的取值范围是              

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数 :
(1)写出此函数的定义域和值域;
(2)证明函数在为单调递减函数;
(3)试判断并证明函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,且,其中是自然对数的底数.
(1)求的关系;
(2)若在其定义域内为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)用定义证明:不论为何实数上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

a∈R,函数f(x)=lnxax.
(1)讨论函数f(x)的单调区间和极值;
(2)已知(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的两个零点为
,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为 (a∈R).
(1)求f(x)在[-1,0]上的解析式;
(2)求f(x)在[0,1]上的最大值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数是偶函数.
(1)求的值;
(2)设函数,其中若函数的图象有且只有一个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
①求函数的定义域;    ②求的值;    (10分)

查看答案和解析>>

同步练习册答案