精英家教网 > 高中数学 > 题目详情
若方程x2+ky2=4表示焦点在y轴上的椭圆,则实数k的取值范围是(  )
A.(0,1)B.(0,2)C.(1,4)D.(0,+∞)
椭圆方程化为
x2
4
+
y2
4
k
=1

由于椭圆的焦点在y轴上,则
4
k
>4
,即k<1.
又k>0,
∴0<k<1.
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

△ABC的顶点A(-5,0)、B(5,0),△ABC的周长为22,则顶点C的轨迹方程是(  )
A.
x2
36
+
y2
11
=1
B.
x2
25
+
y2
11
=1
C.
x2
36
+
y2
11
=1(y≠0)
D.
x2
9
+
y2
16
=1(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知椭圆A,B,C是长轴长为4的椭圆上三点,点A是长轴的一个端点,BC过椭圆的中心O,且
AC
BC
=0,|
BC
|=2|
AC
|

(Ⅰ)求椭圆的标准方程;
(Ⅱ)如果椭圆上两点P,Q使得直线CP,CQ与x轴围成底边在x轴上的等腰三角形,是否总存在实数λ使
PQ
AB
?请给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程
x2
k-2
+
y2
3-k
=1
表示椭圆,则实数k的取值范围是(  )
A.k<2B.k>3
C.2<k<3且k≠
5
2
D.k<2或k>3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知θ∈(0°,90°],则方程x2+y2sinθ=1表示的平面图形是(  )
A.圆B.椭圆C.双曲线D.圆或椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程ax2+by2=ab和ax+by+c=0,其中,ab≠0,a≠b,c>0,它们所表示的曲线可能是下列图象中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的对称轴为坐标轴,实轴长与虚轴长的和为14,焦距为10,则焦点在x轴上的双曲线的方程为(  )
A.
x2
9
+
y2
16
=1
B.
x2
25
+
y2
16
=1
C.
x2
9
-
y2
16
=1
x2
16
-
y2
9
=1
D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
4
+y2=1的两个焦点为F1F2
,点M在椭圆上,
MF1
MF2
等于-2,则△F1MF2的面积等于(  )
A.1B.
2
C.2D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆方程
x2
a2
+
y2
2a-1
=1(1<a≤5)
,过其右焦点做斜率不为0的直线l与椭圆交于A,B两点,设在A,B两点处的切线交于点M(x0,y0),则M点的横坐标x0的取值范围是(  )
A.[4,+∞)B.[4,
25
4
]
C.(4,
25
4
]
D.(4,
25
4
)

查看答案和解析>>

同步练习册答案