精英家教网 > 高中数学 > 题目详情
已知椭圆方程
x2
a2
+
y2
2a-1
=1(1<a≤5)
,过其右焦点做斜率不为0的直线l与椭圆交于A,B两点,设在A,B两点处的切线交于点M(x0,y0),则M点的横坐标x0的取值范围是(  )
A.[4,+∞)B.[4,
25
4
]
C.(4,
25
4
]
D.(4,
25
4
)
依题意,a2-(2a-1)=(a-1)2>0,
∴方程为
x2
a2
+
y2
2a-1
=1(1<a≤5)的椭圆的焦点在x轴,
作图如右:
由图知,当l过其右焦点且垂直于x轴时,M点的横坐标x0最小,
∵F(a-1,0),
∴AB⊥x轴时,l的方程为x=a-1,
x2
a2
+
y2
2a-1
=1
x=a-1
得:A(a-1,
2a-1
a
),B(a-1,-
2a-1
a
)(1<a≤5),
∵过A(a-1,
2a-1
a
)点的椭圆的切线方程为:
a-1
a2
x+
2a-1
a
b2
y=1,
∴令y=0,得x=
a2
a-1
=
[(a-1)+1]2
a-1
=(a-1)+
1
a-1
+2,
∵1<a≤5,
∴x=(a-1)+
1
a-1
+2≥4(当且仅当a=2时取“=”).
∴x≥4.
当l绕右焦点F顺时针旋转时,x0的取值越来越大,直至无穷.
∴M点的横坐标x0的取值范围是[4,+∞).
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若方程x2+ky2=4表示焦点在y轴上的椭圆,则实数k的取值范围是(  )
A.(0,1)B.(0,2)C.(1,4)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
25
+
y2
m
=1
的一个焦点坐标为(3,0),那么m的值为(  )
A.-16B.-4C.16D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,P是椭圆
x2
25
+
y2
16
=1(xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.则|OM|的取值范围______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,tan
C
2
=
1
2
AH
BC
=0
AB
•(
CA
+
CB
)=0
,则过点C,以A、H为两焦点的椭圆的离心率为(  )
A.
1
2
B.
1
3
C.
2
2
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2(k1k2≠0),若椭圆的离心率为
3
2
,则|k1|+|k2|的最小值为(  )
A.1B.
2
C.
3
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
16
+
y2
8
=1
的焦点分别为F1、F2,以原点为圆心且过焦点的圆O与椭圆相交于点P,则△F1PF2的面积等于(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
16
+
y2
12
=1
的左右焦点分别为F1、F2,则在椭圆C上满足
PF1
PF2
=0
的点P的个数有(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,F1,F2分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若cos∠F1BF2=
7
25
,则直线CD的斜率为______.

查看答案和解析>>

同步练习册答案