精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系xOy中,F1,F2分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若cos∠F1BF2=
7
25
,则直线CD的斜率为______.
cos∠F1BF2=
7
25

∴2cos2∠OBF1-1=
7
25

cos∠OBF1=
4
5
b
a
=
4
5

e=
3
5
=
c
a

-
b2
a2
=kBDkCD=-
b
c
kCD

kCD=
bc
a2

kCD=
bc
a2
=
12
25

故答案为:
12
25
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆方程
x2
a2
+
y2
2a-1
=1(1<a≤5)
,过其右焦点做斜率不为0的直线l与椭圆交于A,B两点,设在A,B两点处的切线交于点M(x0,y0),则M点的横坐标x0的取值范围是(  )
A.[4,+∞)B.[4,
25
4
]
C.(4,
25
4
]
D.(4,
25
4
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆E:
x2
a2
+y2=1
的焦点在x轴上,且长轴长为短轴长的2倍,则它的离心率为(  )
A.
1
2
B.
2
3
C.
3
2
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如下图,椭圆中心为O,F是焦点,A为顶点,准线l交OA延长线于B,P,Q在椭圆上且PD⊥l于D,QF⊥OA于F,则以下比值①
|PF|
|PD|
|QF|
|BF|
|AO|
|BO|
|AF|
|BA|
|FO|
|AO|
能作为椭圆的离心率的是______(填写所有正确的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P是椭圆
x2
16
+
y2
12
=1(y≠0)
上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2平分线上的一点,且F1M⊥MP,则OM的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
4
+
y2
3
=1
内有一点P(1,-1),F为椭圆的右焦点,在椭圆上有一动点M,则|MP|+|MF|的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1,F2为椭圆
x2
25
+
y2
9
=1
的两个焦点,A,B为过F1的直线与椭圆的两个交点,则△AF1F2的周长为______△ABF2周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点.
(1)设椭圆C上的点A(1,
3
2
)
到两焦点的距离之和为4,求椭圆C的方程;
(2)设P是(1)中椭圆上的一点,∠F1PF2=60°求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知椭圆
x2
4
+
y2
3
=1的左焦点为F,直线x-y-1=0,x-y+1=0与椭圆分别相交于点A,B,C,D,则AF+BF+CF+DF=______.

查看答案和解析>>

同步练习册答案