精英家教网 > 高中数学 > 题目详情
椭圆E:
x2
a2
+y2=1
的焦点在x轴上,且长轴长为短轴长的2倍,则它的离心率为(  )
A.
1
2
B.
2
3
C.
3
2
D.
3
3
∵椭圆E:
x2
a2
+y2=1
的焦点在x轴上,且长轴长为短轴长的2倍,
∴2a=2×2b,化为a=2b.
e=
c
a
=
1-
b2
a2
=
3
2

故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
25
+
y2
m
=1
的一个焦点坐标为(3,0),那么m的值为(  )
A.-16B.-4C.16D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
16
+
y2
8
=1
的焦点分别为F1、F2,以原点为圆心且过焦点的圆O与椭圆相交于点P,则△F1PF2的面积等于(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
16
+
y2
12
=1
的左右焦点分别为F1、F2,则在椭圆C上满足
PF1
PF2
=0
的点P的个数有(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点分别为F1、F2,以F1、F2为边作等边三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率为(  )
A.4(2-
3
)
B.
3
-1
C.
1
2
(
3
+1)
D.
1
4
(
3
+2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆x2+my2=1(0<m<1)的离心率为
2
2
,则它的长轴长是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆x2+8y2=1的焦点坐标是(  )
A.(0,±
2
4
)
B.
14
4
,0)
C.(0,±
7
)
D.(±1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,F1,F2分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若cos∠F1BF2=
7
25
,则直线CD的斜率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示:椭圆的中心为O,F为焦点,A为顶点,准线L交OA的延长线于B,P、Q在椭圆上,且PD⊥L于D,QF⊥OA于F,椭圆的离心率为e,给出下列结论:
e=
|PF|
|PD|
;②e=
|QF|
|BF|
;③e=
|AO|
|BO|
;④e=
|AF|
|PF|
;⑤e=
|FO|
|AO|

其中正确命题的序号是______(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案