精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
16
+
y2
12
=1
的左右焦点分别为F1、F2,则在椭圆C上满足
PF1
PF2
=0
的点P的个数有(  )
A.0B.2C.3D.4
设椭圆C:
x2
16
+
y2
12
=1
上的点P坐标为(m,n),
∵a2=16,b2=12,∴c=
a2-b2
=2,
可得焦点分别为F1(-2,0)、F2(2,0),
由此可得
PF1
=(-2-m,-n),
PF2
=(2-m,-n),
PF1
PF2
=0
,得(-2-m)(2-m)+n2=0,化简得n2=4-m2,…①
又∵点P(m,n)在椭圆C上,∴
m2
16
+
n2
12
=1
,化简得3m2+4n2=48,
再代入①得3m2+4(4-m2)=48,解之得m2=-32,与m2≥0 矛盾.
因此不存在满足
PF1
PF2
=0
的点P.
故选:A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
4
+y2=1的两个焦点为F1F2
,点M在椭圆上,
MF1
MF2
等于-2,则△F1MF2的面积等于(  )
A.1B.
2
C.2D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆方程
x2
a2
+
y2
2a-1
=1(1<a≤5)
,过其右焦点做斜率不为0的直线l与椭圆交于A,B两点,设在A,B两点处的切线交于点M(x0,y0),则M点的横坐标x0的取值范围是(  )
A.[4,+∞)B.[4,
25
4
]
C.(4,
25
4
]
D.(4,
25
4
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
4
+
y2
3
=1
的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
y2
16
+
x2
4
=1
上一点M到焦点F1的距离为2,N是MF1的中点,O为坐标原点,则|ON|等于(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C短轴的一个端点为(0,1),离心率为
2
2
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线y=x+m交椭圆C于A、B两点,若|AB|=
6
3
5
,求m.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆E:
x2
a2
+y2=1
的焦点在x轴上,且长轴长为短轴长的2倍,则它的离心率为(  )
A.
1
2
B.
2
3
C.
3
2
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如下图,椭圆中心为O,F是焦点,A为顶点,准线l交OA延长线于B,P,Q在椭圆上且PD⊥l于D,QF⊥OA于F,则以下比值①
|PF|
|PD|
|QF|
|BF|
|AO|
|BO|
|AF|
|BA|
|FO|
|AO|
能作为椭圆的离心率的是______(填写所有正确的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点.
(1)设椭圆C上的点A(1,
3
2
)
到两焦点的距离之和为4,求椭圆C的方程;
(2)设P是(1)中椭圆上的一点,∠F1PF2=60°求△F1PF2的面积.

查看答案和解析>>

同步练习册答案