精英家教网 > 高中数学 > 题目详情
设F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点.
(1)设椭圆C上的点A(1,
3
2
)
到两焦点的距离之和为4,求椭圆C的方程;
(2)设P是(1)中椭圆上的一点,∠F1PF2=60°求△F1PF2的面积.
(1)依题意得:2a=4,则a=2,
又点A(1,
3
2
)在椭圆C:
x2
a2
+
y2
b2
=1上,则
1
4
+
9
4b2
=1,
解得b2=3,
∴所求椭圆C的方程为:
x2
4
+
y2
3
=1.
(2)∵c2=a2-b2=4-3=1,
∴c=1,
而|F1F2|=2c=2,
令|PF1|=m,|PF2|=n,则m+n=2a=4,
在△PF1F2中∠F1PF2=60°,由余弦定理得:(|F1F2|)2=m2+n2-2mncos60°,
即m2+n2-2mncos60°=4,
即(m+n)2-3mn=4,
解得mn=4,
SPF1F2=
1
2
mnsin60°=
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
16
+
y2
12
=1
的左右焦点分别为F1、F2,则在椭圆C上满足
PF1
PF2
=0
的点P的个数有(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,F1,F2分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若cos∠F1BF2=
7
25
,则直线CD的斜率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,椭圆的中心在原点,焦点F1、F2在x轴上,A、B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,PF2AB,则此椭圆的离心率是(  )
A.
1
2
B.
5
5
C.
1
3
D.
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P是椭圆
x2
16
+
y2
9
=1
上的点,F1、F2分别是椭圆的左、右焦点,若∠F1PF2=60°,则△F1PF2的面积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点且垂直于x轴的直线与椭圆交于M、N两点,以MN为直径的圆恰好过左焦点,则椭圆的离心率等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示:椭圆的中心为O,F为焦点,A为顶点,准线L交OA的延长线于B,P、Q在椭圆上,且PD⊥L于D,QF⊥OA于F,椭圆的离心率为e,给出下列结论:
e=
|PF|
|PD|
;②e=
|QF|
|BF|
;③e=
|AO|
|BO|
;④e=
|AF|
|PF|
;⑤e=
|FO|
|AO|

其中正确命题的序号是______(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC的两个顶点A,B的坐标分别是(0,-1),(0,1),且AC,BC所在直线的斜率之积等于m(m≠0).
(1)求顶点C的轨迹E的方程,并判断轨迹E为何种圆锥曲线;
(2)当m=-
1
2
时,过点F(1,0)的直线l交曲线E于M,N两点,设点N关于x轴的对称点为Q(M,Q不重合)试问:直线MQ与x轴的交点是否为定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是(  )
A.(0,
1
3
B.(
1
3
1
2
C.(
1
3
2
5
D.(
2
5
,1)

查看答案和解析>>

同步练习册答案