精英家教网 > 高中数学 > 题目详情
如下图,椭圆中心为O,F是焦点,A为顶点,准线l交OA延长线于B,P,Q在椭圆上且PD⊥l于D,QF⊥OA于F,则以下比值①
|PF|
|PD|
|QF|
|BF|
|AO|
|BO|
|AF|
|BA|
|FO|
|AO|
能作为椭圆的离心率的是______(填写所有正确的序号)
设椭圆的方程为
x2
a2
+
y2
b2
=1
,(a>b>0)依次分析5个比值的式子可得:
①、根据椭圆的第二定义,可得 e=
|PF|
|PD|
故符合;
②、根据椭圆的性质,可得|BF|=
a2
c
-c=
b2
c
,|QF|=
b2
a
,则
|QF|
|BF|
=
c
a
=e,故符合;
③、由椭圆的性质,可得|AO|=a,|BO|=
a2
c
,则
|AO|
|BO|
=
c
a
=e,故符合;
④由椭圆的性质,可得
|AF|
|BA|
=e,故符合;
⑤、由椭圆的性质,可得|AO|=a,|FO|=c,
|FO|
|AO|
=
c
a
=e,故符合;
故答案为①②③④⑤
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,P是椭圆
x2
25
+
y2
16
=1(xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.则|OM|的取值范围______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
16
+
y2
12
=1
的左右焦点分别为F1、F2,则在椭圆C上满足
PF1
PF2
=0
的点P的个数有(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆x2+my2=1(0<m<1)的离心率为
2
2
,则它的长轴长是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆x2+8y2=1的焦点坐标是(  )
A.(0,±
2
4
)
B.
14
4
,0)
C.(0,±
7
)
D.(±1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P为椭圆
x2
16
+
y2
12
=1
上动点,F为椭圆的右焦点,点A的坐标为(3,1),则|PA|+2|PF|的最小值为(  )
A.10+
2
B.10-
2
C.5D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,F1,F2分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若cos∠F1BF2=
7
25
,则直线CD的斜率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,椭圆的中心在原点,焦点F1、F2在x轴上,A、B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,PF2AB,则此椭圆的离心率是(  )
A.
1
2
B.
5
5
C.
1
3
D.
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC的两个顶点A,B的坐标分别是(0,-1),(0,1),且AC,BC所在直线的斜率之积等于m(m≠0).
(1)求顶点C的轨迹E的方程,并判断轨迹E为何种圆锥曲线;
(2)当m=-
1
2
时,过点F(1,0)的直线l交曲线E于M,N两点,设点N关于x轴的对称点为Q(M,Q不重合)试问:直线MQ与x轴的交点是否为定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

同步练习册答案