精英家教网 > 高中数学 > 题目详情
如图,P是椭圆
x2
25
+
y2
16
=1(xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.则|OM|的取值范围______.
F2M
MP
=0
,∴
F2M
MP

延长F2M交PF1于点N,可知△PNF2为等腰三角形,
且M为F2M的中点,可得OM是△PF1F2的中位线
∴|OM|=
1
2
|NF1|=
1
2
(|PF1|-|PN|)
=
1
2
(|PF1|-|PF2|)=
1
2
(2a-2|PF2|)=a-|PF2|
∵a-c<|PF2|<a+c
∴0<|OM|<c=
a2-b2
=3
∴|OM|的取值范围是(0,3)
故答案为:(0,3)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若方程
x2
k-2
+
y2
3-k
=1
表示椭圆,则实数k的取值范围是(  )
A.k<2B.k>3
C.2<k<3且k≠
5
2
D.k<2或k>3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
4
+y2=1的两个焦点为F1F2
,点M在椭圆上,
MF1
MF2
等于-2,则△F1MF2的面积等于(  )
A.1B.
2
C.2D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P在椭圆
x2
25
+
y2
9
=1
上,F1,F2为两个焦点,若△F1PF2为直角三角形,这样的点P共有(  )
A.4个B.5个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为A,△OAF的面积为
3
2
a2
(O为原点),则此双曲线的离心率是(  )
A.
2
B.2C.
4
3
D.
2
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知集合A={x|-2≤x≤10,x∈Z},m,n∈A,方程
x2
m
+
y2
n
=1
表示焦点在x轴上的椭圆,则这样的椭圆共有______个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆方程
x2
a2
+
y2
2a-1
=1(1<a≤5)
,过其右焦点做斜率不为0的直线l与椭圆交于A,B两点,设在A,B两点处的切线交于点M(x0,y0),则M点的横坐标x0的取值范围是(  )
A.[4,+∞)B.[4,
25
4
]
C.(4,
25
4
]
D.(4,
25
4
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
4
+
y2
3
=1
的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如下图,椭圆中心为O,F是焦点,A为顶点,准线l交OA延长线于B,P,Q在椭圆上且PD⊥l于D,QF⊥OA于F,则以下比值①
|PF|
|PD|
|QF|
|BF|
|AO|
|BO|
|AF|
|BA|
|FO|
|AO|
能作为椭圆的离心率的是______(填写所有正确的序号)

查看答案和解析>>

同步练习册答案