精英家教网 > 高中数学 > 题目详情
8.如图,三棱锥P-ABC中,平面PAC⊥平面ABC,∠BCA=90°,且BC=CA=2,PC=PA.
(1)求证:PA⊥BC;
(2)当PC的值为多少时,满足PA⊥平面PBC?并求出此时该三棱锥P-ABC的体积.

分析 (1)由已知可得BC⊥AC,再由平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,且BC?平面ABC,得到BC⊥平面PAC,从而证得结论PA⊥BC;
(2)由(1)知PA⊥BC,只需PA⊥PC,就有PA⊥平面PBC,结合已知条件求出PC,进一步求出三棱锥P-ABC的体积.

解答 (1)证明:∵∠BCA=90°,∴BC⊥AC.
∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,且BC?平面ABC,
∴BC⊥平面PAC.
又PA?平面PAC.
∴PA⊥BC;
(2)解:由(1)知PA⊥BC,
故只需PA⊥PC,就有PA⊥平面PBC,
∵PC=PA,AC=2,
∴PC=$\sqrt{2}$.
此时,${V}_{P-ABC}=\frac{1}{3}•{S}_{△PBC}•AP$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{2}×\sqrt{2}=\frac{2}{3}$.

点评 本题考查直线与平面垂直,几何体的体积的求法,考查转化思想以及逻辑推理能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:选择题

设集合,集合,则等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x、y满足x3+2y3=x-y,x>0,y>0.则x、y使得x2+ky2≤1恒成立的k的最大值为(  )
A.2$\sqrt{3}$B.2+$\sqrt{5}$C.2+2$\sqrt{3}$D.$\sqrt{7}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,E的右焦点到直线y=x+1的距离为$\sqrt{2}$.
(1)求椭圆E的方程;
(2)设椭圆E的右顶点为A,不经过点A的直线l与椭圆E交于M,N两点,且以MN为直径的圆过A,求证:直线l恒过定点,并求出此定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在实数集R上的函数f(x)满足f(x+1)=$\frac{1}{2}$+$\sqrt{f(x)-{f}^{2}(x)}$,则f(0)+f(2017)的最大值为(  )
A.1-$\frac{\sqrt{2}}{2}$B.1+$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线y=2x+$\frac{p}{2}$与抛物线x2=2py(p>0)相交于A,B两点,则|AB|等于(  )
A.5pB.10pC.11pD.12p

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=a(x-2)ex+lnx+$\frac{1}{x}$存在唯一的极值点,且此极值大于0,则(  )
A.0≤a<$\frac{1}{e}$B.0≤a<$\frac{1}{{e}^{2}}$C.-$\frac{1}{e}$<a<$\frac{1}{{e}^{2}}$D.0≤a<$\frac{1}{e}$或a=-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.天气预报说,在今后三天中,每天下雨的概率均为0.4,有人用计算机产生0到9之间取整数值的随机数,他用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,产生3个随机数作为一组,产生20组随机数如下:027   556   488   730   113   537   989   907   966   191   925   271   932   812   458   569   683   431   257   393,以此预测这三天中至少有两天下雨的概率大约是(  )
A.0.30B.0.33C.0.35D.0.375

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}的前n项和为Sn,且S4=a5-a1
(1)求数列{an}的公比q的值;
(2)记bn=log2an+1,数列{bn}的前n项和为Tn,若T4=2b5,求数列a1的值.

查看答案和解析>>

同步练习册答案