精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=
1
2
x2-2alnx+(a-2)x
,a∈R.
(Ⅰ)当 a=1时,求函数 f(x)的最小值;
(Ⅱ)当a<0时,讨论函数 f(x)的单调性;
(Ⅲ)是否存在实数a,对任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
恒成立,若存在求出a的取值范围,若不存在,说明理由.
分析:(Ⅰ)把a=1代入函数解析式,求导后解出导函数的零点,由导函数的零点对定义域分段,判出在各区间段内的单调性,从而的导函数的最小值;
(Ⅱ)求出函数的导函数,根据a的不同取值对函数定义域分段,由函数导函数的符号判断原函数在各区间段内的单调性;
(Ⅲ)在假设存在实数a使得对任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
恒成立的前提下,把问题转化为(x2)-ax2>f(x1)-ax1恒成立,然后构造函数g(x)=f(x)-ax,利用导函数求出使函数g(x)在(0,+∞)上为增函数的a的取值范围.
解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),
f(x)=
1
2
x2-2alnx+(a-2)x

当a=1时,f(x)=
1
2
x2-2lnx-x

f(x)=x-
2
x
-1=
x2-x-2
x
=
(x+1)(x-2)
x

∴当x∈(0,2)时,f'(x)<0,f(x)为减函数;
当x∈(2,+∞),f'(x)>0,f(x)为增函数.
∴f(x)在x=2时取得最小值,其最小值为f(2)=-2ln2.
(Ⅱ)∵f′(x)=x-
2a
x
+(a-2)=
x2+(a-2)x-2a
x
=
(x-2)(x+a)
x

∴(1)当-2<a<0时,若x∈(0,-a),f'(x)>0,f(x)为增函数;
若x∈(-a,2),f'(x)<0,f(x)为减函数;
若x∈(2,+∞),f'(x)>0,f(x)为增函数.
(2)当a=-2时,在(0,+∞)上f(x)≥0,f(x)为增函数;
(3)当a<-2时,若x∈(0,2),f'(x)>0,f(x)为增函数;
若x∈(2,-a),f'(x)<0,f(x)为减函数;
若x∈(-a,+∞),f'(x)>0,f(x)为增函数.
(Ⅲ)假设存在实数a使得对任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
恒成立,
不妨设0<x1<x2,只要
f(x2)-f(x1)
x2-x1
>a
,即:f(x2)-ax2>f(x1)-ax1
令g(x)=f(x)-ax,只要 g(x)在(0,+∞)为增函数即可.
又函数g(x)=
1
2
x2-2alnx-2x

考查函数g′(x)=x-
2a
x
-2=
x2-2x-2a
x
=
(x-1)2-1-2a
x

要使g'(x)≥0在(0,+∞)恒成立,只要-1-2a≥0,即a≤-
1
2

故存在实数a∈(-∞,-
1
2
]
,对任意的 x1,x2∈(0,+∞),且x1≠x2
f(x2)-f(x1)
x2-x1
>a
恒成立.
点评:本题考查了利用导数研究函数的单调性,考查了导数在最大值最小值中的应用,考查了数学转化思想和分类讨论的数学思想方法,训练了利用构造函数法求参数的取值范围,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案