精英家教网 > 高中数学 > 题目详情
已知数列{an}是正数组成的数列,其前n项和为Sn,对于一切n∈N*均有an与2的等差中项等于Sn与2的等比中项.

(1)计算a1,a2,a3,并由此猜想{an}的通项公式an

(2)用数学归纳法证明(1)中你的猜想.

思路分析:通过计算a1,a2,a3,探索an与n的关系,猜想an的通项,并运用数学归纳法证明.

(1)解:由得Sn=可求得a1=2,a2=6,a3=10,

由此猜想{an}的通项公式an=4n-2(n∈N+).

(2)证明:(Ⅰ)当n=1时,a1=2,等式成立;

(Ⅱ)假设当n=k时,等式成立,即ak=4k-2,

∴ak+1=Sk+1-Sk=,

∴(ak+1+ak)(ak+1-ak-4)=0.

又ak+1+ak≠0,

∴ak+1-a4-4=0,

∴ak+1=ak+4=4k-2+4=4(k+1)-2,

∴当n=k+1时,等式也成立.

由(Ⅰ)(Ⅱ)可得an=4n-2(n∈N+)成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是正项等差数列,给出下列判断:
①a2+a8=a4+a6;②a4•a6≥a2•a8;③a52≤a4•a6;④a2+a8≥2
a4a6
.其中有可能正确的是(  )
A、①④B、①②④
C、①③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是正项等比数列,公比q≠1,若lga2是lga1和1+lga4的等差中项,且a1a2a3=1.
(1)求数列{an}的通项公式
(2)设cn=
1n(3-lgan)
(n∈N*)
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是正项等比数列,若a1=32,a4=4,则数列{log2an}的前n项和Sn的最大值为
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)已知数列{an}是正项等比数列,若a2=2,2a3+a4=16则数列{an}的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•桂林模拟)已知数列{an}是正项数列,其首项a1=3,前n项和为Sn,4Sn=
a
2
n
+2an+4(n≥2)

(1)求数列{an}的第二项a2及通项公式;
(2)设bn=
1
Sn
,记数列{bn}的前n项和为Kn,求证:Kn
17
21

查看答案和解析>>

同步练习册答案