精英家教网 > 高中数学 > 题目详情

如图直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一点,且AD⊥平面A1BC.
(1)求证:BC⊥平面ABB1A1
(2)求三棱锥A-BCD的体积.

证明:(Ⅰ)∵AD⊥平面A1BC,BC⊆平面A1BC,∴AD⊥BC.
∵ABC-A1B1C1是直三棱柱,
∴AA1⊥平面ABC,可得AA1⊥BC.…(3分)
∵AD∩AA1=A,AD、AA1⊆平面ABB1A1
∴BC⊥平面ABB1A1.…(6分)
(Ⅱ)∵BC⊥平面ABB1A1,∴BC⊥AB.
∵AB=BC,∴△ABC是等腰直角三角形,且斜边AC=2,AB=BC=
∴直角三角形AA1B斜边上的高
根据射影定理,得
∴三棱锥A-BCD的体积VA-BCD=VB-ACD=S△ACD×BD=וAD•DC•BD=…(12分)
分析:(I)由直三棱柱的性质,可得AA1⊥BC,由AD⊥平面A1BC,得AD⊥BC,结合线面垂直的判定定理,可得BC⊥平面ABB1A1
(II)由(I)得BC⊥AB,结合已知条件得△ABC是斜边AC=2的等腰直角三角形,然后在Rt△AA1B中,算出斜边上的高AD的长,根据射影定理算出BD的长,从而得到三角形BCD的面积,最后用锥体体积公式,可以算出三棱锥A-BCD的体积,即得三棱锥A-BCD的体积.
点评:本题给出特殊的三棱柱,求证线面垂直并且求三棱锥的体积,着重考查了直线与平面垂直的判定与性质和锥体体积公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B-APQC的体积为(  )
A、
V
2
B、
V
3
C、
V
4
D、
V
5

查看答案和解析>>

科目:高中数学 来源: 题型:

16、如图直三棱柱ABC-DEF中,∠CAB是直角,AB=AC=CF,则异面直线DB与AF所成角的度数为
60°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•徐汇区二模)如图直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,∠ABC=90°,AC=2,D是AA1的中点
(1)求三棱柱ABC-A1B1C1的体积V;
(2)求C1D与上底面所成角的大小.(用反三角表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)如图直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一点,且AD⊥平面A1BC.
(1)求证:BC⊥平面ABB1A1
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)如图直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一点,且AD⊥平面A1BC.
(1)求证:BC⊥平面ABB1A1
(2)在棱BB1是否存在一点E,使平面AEC与平面ABB1A1的夹角等于60°,若存在,试确定E点的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案