【题目】设
,在复平面内z对应的点为Z,那么满足下列条件的点Z的集合是什么图形?
(1)
;
(2)
.
【答案】(1)以原点O为圆心,以1为半径的圆.
(2)以原点O为圆心,以1及2为半径的两个圆所夹的圆环,但不包括圆环的边界
【解析】
(1)根据复数模的定义确定复数对应点满足条件,即得轨迹;
(2)根据复数模的定义确定复数对应点满足条件,即得轨迹.
解:(1)由
得,向量
的模等于1,所以满足条件
的点Z的集合是以原点O为圆心,以1为半径的圆.
(2)不等式
可化为不等式![]()
不等式
的解集是圆
的内部所有的点组成的集合,不等式
的解集是圆
外部所有的点组成的集合,这两个集合的交集,就是上述不等式组的解集,也就是满足条件
的点Z的集合.容易看出,所求的集合是以原点O为圆心,以1及2为半径的两个圆所夹的圆环,但不包括圆环的边界(如图).
![]()
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线
的参数方程为
(
为参数,
),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(Ⅰ)讨论直线
与圆
的公共点个数;
(Ⅱ)过极点作直线
的垂线,垂足为
,求点
的轨迹与圆
相交所得弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
(
为参数),曲线
(
为参数).
(1)设
与
相交于
两点,求
;
(2)若把曲线
上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
的距离的最大时,点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在考察黄烟经过药物处理和发生青花病的关系时,得到如下数据:在试验的470株黄烟中,经过药物处理的黄烟有25株发生青花病,60株没有发生青花病;未经过药物处理的有185株发生青花病,200株没有发生青花病.试推断药物处理跟发生青花病是否有关系.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,计划抽取一个容量为21的样本,应采用怎样的抽样方法?并写出抽样过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某技校开展技能大赛,甲、乙两班各选取5名学生加工某种零件,在4个小时内每名学生加工的合格零件数的统计数据的茎叶图如图所示,已知甲班学生在4个小时内加工的合格零件数的平均数为21,乙班学生在4个小时内加工的合格零件数的平均数不低于甲班的平均数.
![]()
(1)求
的值;
(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差
和
,并由此比较两班学生的加工水平的稳定性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 2 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,点
,直线
,设圆
的半径为1, 圆心在
上.
![]()
(1)若圆心
也在直线
上,过点
作圆
的切线,求切线方程;
(2)若圆
上存在点
,使
,求圆心
的横坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在[﹣2,2]上的函数f(x)在区间[0,2]上单调递减,且f(1﹣m)<f(3m).
(1)若函数f(x)在区间[﹣2,2]上是奇函数,求实数m的取值范围;
(2)若函数f(x)在区间[﹣2,2]上是偶函数,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com