精英家教网 > 高中数学 > 题目详情

【题目】已知在正项等比数列{an}中,a1=1,a2a4=16,则|a1﹣12|+|a2﹣12|+…+|a8﹣12|=(
A.224
B.225
C.226
D.256

【答案】B
【解析】解:设正项等比数列{an}的公比为q>0,∵a1=1,a2a4=16,∴q4=16,解得q=2.
=2n1
由2n1≤12,解得n≤4.
∴|a1﹣12|+|a2﹣12|+…+|a8﹣12|=12﹣a1+12﹣a2+12﹣a3+12﹣a4+a5﹣12+…+a8﹣12
=﹣2(a1+a2+a3+a4)+(a1+a2+…+a8
=﹣ +
=﹣2(24﹣1)+28﹣1
=225.
故选B.
【考点精析】关于本题考查的等比数列的通项公式(及其变式)和数列的前n项和,需要了解通项公式:;数列{an}的前n项和sn与通项an的关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c.已知
(1)求 的值;
(2)若cosB= ,△ABC的周长为5,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1,2)是函数f(x)=ax(a>0,且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)﹣1.
求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求点A到平面A1DE的距离;
(2)求证:CF∥平面A1DE;
(3)求二面角E﹣A1D﹣A的平面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接珠海作为全国文明城市的复查,爱卫会随机抽取了60位路人进行问卷调查,调查项目是自己对珠海各方面卫生情况的满意度(假设被问卷的路人回答是客观的),以分数表示问卷结果,并统计他们的问卷分数,把其中不低于50分的分成五段[50,60),[60,70),…[90,100]后画出如图部分频率分布直方图,观察图形信息,回答下列问题:

(1)求出问卷调查分数低于50分的被问卷人数;
(2)估计全市市民满意度在60分及以上的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若上单调递减,求的取值范围;

(Ⅱ)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为集合A,B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}
(1)求A,(RA)∩B;
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.

(Ⅰ)求的值

(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案