【题目】已知命题P:4x﹣a2x+1≥0对x∈[﹣1,1]恒成立,命题Q:f(x)=log2(ax2﹣2x+ )的值域是R,若满足P且Q为假,P或Q为真,求实数a的取值范围.
【答案】解:∵命题P:4x﹣a2x+1≥0对x∈[﹣1,1]恒成立,
∴a≤2x+2﹣x , 对x∈[﹣1,1]恒成立,
∴a≤2,
∵命题Q:f(x)=log2(ax2﹣2x+ )的值域是R,
∴①a=0时,f(x)=log2(﹣2x+ ),符合题意;
②a≠0时,由题意,a>0且△≥0,
综上,0≤a≤3,
∵P且Q为假,P或Q为真,∴P、Q一真一假,
①若P真,Q假,则a<0;
②若P假,Q真,则2<a≤3.
综上,实数a的取值范围为(﹣∞,0)∪(2,3]
【解析】先解命题,再研究命题的关系.若p且q为假,p或q为真,两者是一真一假,计算可得答案.
【考点精析】利用复合命题的真假对题目进行判断即可得到答案,需要熟知“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.
科目:高中数学 来源: 题型:
【题目】已知集合A={y|y=log2x,x≥4},B={y|y=( )x , ﹣1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a﹣1},且C∪B=B,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数在单调递增,其中.
(1)求的值;
(2)若,当时,试比较与的大小关系(其中是的导函数),请写出详细的推理过程;
(3)当时, 恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问
(1)在y轴上是否存在点M,满足 ?
(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,底面为直角梯形, , ,平面底面ABCD,Q为AD的中点,M是棱上的点,
(Ⅰ)若是棱 的中点,求证: ;
(Ⅱ)若二面角的大小为,试求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com