精英家教网 > 高中数学 > 题目详情
已知sin(α+
π
3
)+sinα=-
4
3
5
,-
π
2
<α<0,求cosα的值.
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:解法一:利用两角和的正弦公式,将已知中sin(α+
π
3
)+sinα=-
4
3
5
展开,结合辅助角公式,可得sin(a+
π
6
)=-
4
5
,结合-
π
2
<α<0,利用两角和的余弦公式,可得cosα的值.
解法二:利用两角和的正弦公式,将已知中sin(α+
π
3
)+sinα=-
4
3
5
展开,化简后可得sinα•
3
+cosα=-
8
5
,结合两弦平方和为1,解方程可得cosα的值.
解答: 解法一:∵sin(α+
π
3
)+sinα=-
4
3
5

sinα•
1
2
+cosα•
3
2
+sina=-
4
3
5

sinα•
3
2
+cosα•
3
2
=-
4
3
5
…(2分)
sinα•
3
2
+cosα•
3
2
=-
4
3
5
⇒sinα•
3
2
+cosα•
1
2
=-
4
5
⇒sin(a+
π
6
)=-
4
5
…(5分)
-
π
3
<a+
π
6
π
6
,…(6分)
cos(a+
π
6
)=
1-sin2(a+
π
6
)
=
3
5
…(7分)
cosa=cos[(a+
π
6
)-
π
6
]=cos(a+
π
6
)cos
π
6
+sin(a+
π
6
)sin
π
6
…(9分)
=
3
5
3
2
+(-
4
5
)•
1
2
=
3
3
-4
10
…(10分)
解法二:∵sin(α+
π
3
)+sinα=-
4
3
5

sinα•
1
2
+cosα•
3
2
+sina=-
4
3
5

sinα•
3
2
+cosα•
3
2
=-
4
3
5
⇒sinα•
3
+cosα=-
8
5
…(2分)
sinα•
3
+cosα=-
8
5
sin2a+cos2a=1
…(4分)
sinα•
3
+cosα=-
8
5
sina=
-
8
5
-cosa
3

代入得⇒(
-
8
5
-cosa
3
)2+cos2a=1
…(6分)
即100cos2a+80cosa-11=0…(7分)
解得:cosa=
±3
3
-4
10
,…(9分)
∵cosa∈[-1,1],
cosa=
3
3
-4
10
…(10分)
点评:本题考查的知识点是两角和与差的正弦公式,给值求值,是三角函数求值问题的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的正方体ABCD-A1B1C1D1中.
(Ⅰ)若M、N、P分别是C1C、B1C1、D1C1的中点,求证:平面MNP∥平面A1BD.
(Ⅱ)求直线BC1与平面ACC1A1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax5+bx3+c的图象过点(0,1),当x=1取得极值
13
15

(1)求f(x);
(2)求f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀 非优秀 总计
甲班 10
乙班 30
合计 105
已知在全部105人中抽到随机抽取1人为优秀的概率为
2
7

(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+a|x-1|+1(a∈R),求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=-x2+x在x=3附近的平均变化率,并求出在该点处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+3x2+9x-2
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)求f(x)在区间[-2,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=lnx-ax.
(1)若a=2,求曲线y=f(x)在x=1处的切线方程;
(2)若a<
2
e2
,试判断函数f(x)在x∈(1,e2)的零点个数,并说明你的理由;
(3)若f(x)有两个相异零点x1,x2,求证:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项的和Sn,已知a1=1,2Sn=nan+1-
1
3
n3-n2-
2
3
n,n∈N*
(1)求a2的值;
(2)证明:数列{
an
n
}是等差数列,并求出数列{an}的通项公式;
(3)证明:对一切正整数n,有
1
a1
+
1
a2
+
1
a3
+…+
1
an
7
4

查看答案和解析>>

同步练习册答案