19£®º¯Êý$f£¨x£©=2\sqrt{3}sin£¨¦Øx+\frac{¦Ð}{3}£©£¨¦Ø£¾0£©$ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏóÈçͼËùʾ£¬AΪͼÏóµÄ×î¸ßµã£¬B¡¢CΪͼÏóÓëxÖáµÄ½»µã£¬ÇÒ¡÷ABCΪÕýÈý½ÇÐΣ®
£¨1£©Ç󦨵ÄÖµ¼°º¯Êýf£¨x£©µÄÖµÓò£»
£¨2£©Èô$f£¨{x_0}£©=\frac{{8\sqrt{3}}}{5}$£¬ÇÒ${x_0}¡Ê£¨-\frac{10}{3}£¬\frac{2}{3}£©$£¬Çóf£¨x0+1£©µÄÖµ£»
£¨3£©½«º¯Êýy=f£¨x£©µÄͼÏóÉϸ÷µãµÄ×Ý×ø±ê±äΪԭÀ´µÄ$\frac{{\sqrt{3}}}{6}$±¶£¬ºá×ø±ê²»±ä£¬ÔÙ½«ËùµÃͼÏó¸÷µãµÄºá×ø±ê±äΪԭÀ´µÄ¦Ø±¶£¬×Ý×ø±ê²»±ä£¬×îºó½«ËùµÃͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬µÃµ½y=g£¨x£©µÄͼÏó£¬Èô¹ØÓÚxµÄ·½³Ì2[g£¨x£©]2-4ag£¨x£©+1-a=0ÔÚÇø¼ä[0£¬¦Ð]ÉÏÓÐÁ½¸ö²»Í¬½â£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÖÜÆÚ¹«Ê½¿ÉÇ󦨣¬ÓÉÕýÏÒº¯ÊýµÄÐÔÖÊ¿ÉÇóÖµÓò£®
£¨2£©ÓÉÒÑÖª¼°£¨1£©¿ÉÇósin £¨ $\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{3}$£©£¬½áºÏ·¶Î§x0¡Ê£¨-$\frac{10}{3}$£¬$\frac{2}{3}$£©£¬µÃ $\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{3}$¡Ê£¨-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$£©£¬¿ÉÇócos £¨ $\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{3}$£©£¬¹Êf£¨x0+1£©=2$\sqrt{3}$sin £¨ $\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{4}$+$\frac{¦Ð}{3}$£©=2$\sqrt{3}$sin[£¨$\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{3}$£©+$\frac{¦Ð}{4}$]ÀûÓÃÁ½½ÇºÍµÄÕýÏÒº¯Êý¹«Ê½¼´¿ÉÇóÖµ£®
£¨3£©¸ù¾Ýº¯Êý±ä»»¹æÂɵõ½Ðµĺ¯Êý½âÎöʽΪ£ºg£¨x£©=sinx£¬x¡Ê[0£¬¦Ð]£¬Áît=g£¨x£©£¬t¡Ê[0£¬1]£¬Ôò2t2-4at+1-a=0£®ÈôҪʹµÃ¹ØÓÚxµÄ·½³ÌÔÚ[0£¬¦Ð]ÉÏÓÐÁ½¸ö²»Í¬µÄ¸ù£¬Ôò¹ØÓÚt µÄ·½³ÌÔÚt¡Ê[0£¬1£©ÉÏÖ»ÓÐΨһ½â£¬¾Ý´ËÇóµÃʵÊýaµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÓÚÕýÈý½ÇÐÎABCµÄ¸ßΪ2$\sqrt{3}$£¬ÔòBC=4£¬
ËùÒÔ£¬º¯Êý$f£¨x£©µÄÖÜÆÚT=4¡Á2=8£¬¼´\frac{2¦Ð}{¦Ø}=8£¬µÃ¦Ø=\frac{¦Ð}{4}$£¬
ËùÒÔ£¬º¯Êý$f£¨x£©µÄÖµÓòΪ[-2\sqrt{3}£¬2\sqrt{3}]$£®
£¨2£©ÒòΪ$f£¨{x_0}£©=\frac{{8\sqrt{3}}}{5}£¬ÓÉ$£¨1£©ÓÐ$f£¨{x_0}£©=2\sqrt{3}sin£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©=\frac{{8\sqrt{3}}}{5}$£¬$¼´sin£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©=\frac{4}{5}$£¬
ÓÉ${x_0}¡Ê£¨-\frac{10}{3}£¬\frac{2}{3}£©£¬Öª\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}¡Ê£¨-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}£©$£¬
ËùÒÔ$cos£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©=\sqrt{1-{{£¨\frac{4}{5}£©}^2}}=\frac{3}{5}$£®
¹Êf£¨x0+1£©=$2\sqrt{3}sin£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{4}+\frac{¦Ð}{3}£©$=$2\sqrt{3}sin[£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©+\frac{¦Ð}{4}]$
$\begin{array}{l}=2\sqrt{3}[sin£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©cos\frac{¦Ð}{4}+cos£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©sin\frac{¦Ð}{4}]\\=2\sqrt{3}£¨\frac{4}{5}¡Á\frac{{\sqrt{2}}}{2}+\frac{3}{5}¡Á\frac{{\sqrt{2}}}{2}£©\end{array}$
=$\frac{{7\sqrt{6}}}{5}$£®
£¨3£©ÓÉÌâ¿ÉÖªg£¨x£©=sinx£¬x¡Ê[0£¬¦Ð]£¬Áît=g£¨x£©£¬t¡Ê[0£¬1]£¬
Ôò2t2-4at+1-a=0£®
ÈôҪʹµÃ¹ØÓÚxµÄ·½³ÌÔÚ[0£¬¦Ð]ÉÏÓÐÁ½¸ö²»Í¬µÄ¸ù£¬Ôò¹ØÓÚt µÄ·½³ÌÔÚt¡Ê[0£¬1£©ÉÏÖ»ÓÐΨһ½â£¬ËùÒÔÓÐÒÔϼ¸ÖÖÇé¿ö
?¢Ùf£¨0£©•f£¨1£©£¼0£¬
½âµÃ$\frac{3}{5}$£¼a£¼1£»
¢Ú¡÷=0£¬
½âµÃa=$\frac{1}{2}$»òa=-1£®
µ±$a=\frac{1}{2}$ʱ£¬$t=\frac{1}{2}$£¬Âú×ãÌâÒ⣻
µ±a=-1ʱ£¬t=-1£¬²»·ûºÏÌâÒ⣬ÉáÈ¥a=-1£®
?µ±t=0ʱ£¬½âµÃa=1£¬´ËʱÁíÒ»¸ö¸ùt=2²»ÔÚ[0£¬1£©ÉÏ£¬ËùÒÔa=1·ûºÏÌâÒ⣮
×ÛÉÏËùÊöaµÄȡֵ·¶Î§ÊÇ$\left\{{a|\frac{3}{5}}\right.£¼a¡Ü1»òa=\frac{1}{2}\left.{\;}\right\}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÓÉy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈ·¶¨Æä½âÎöʽ£¬Èý½Çº¯ÊýµÄ»¯¼òÇóÖµ£¬ÕýÏÒº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèÈý½ÇÐεÄÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬ÇÒa=2bsinA£®ÆäÖнÇBΪÈñ½Ç£®
£¨1£©ÇóBµÄ´óС£»
£¨2£©ÇócosA+sinCµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÉèµÈ²îÊýÁÐ{an}µÄǰnÏîºÍSn£¬a1+a2=-20£¬a4+a6=-6£¬Ôòµ±SnÈ¡×îСֵʱ£¬nµÈÓÚ£¨¡¡¡¡£©
A£®6B£®7C£®8D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=xlnx£¬g£¨x£©=-x2+ax-3£¬
£¨1£©Çóº¯Êýf£¨x£©µÄͼÏóÔڵ㣨1£¬0£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä$[t£¬t+\frac{1}{e}]£¨t£¾0£©$ÉϵÄ×îСֵ£»
£¨3£©¶ÔÒ»ÇÐʵÊýx¡Ê£¨0£¬+¡Þ£©£¬2f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Òø´¨Ò»ÖÐ×îÇ¿´óÄÔÉç¶Ô¸ßÖÐѧÉúµÄ¼ÇÒäÁ¦xºÍÅжÏÁ¦y½øÐÐͳ¼Æ·ÖÎö£¬µÃ±íÊý¾Ý
x681012
y2356
£¨1£©Çë¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$
£¨2£©ÊÔ¸ù¾ÝÒÑÇó³öµÄÏßÐԻع鷽³Ì£¬Ô¤²â¼ÇÒäÁ¦Îª9µÄͬѧµÄÅжÏÁ¦£®
²Î¿¼¹«Ê½£º$\left\{{\begin{array}{l}{\hat b=\frac{{\sum_{i=1}^n{£¨{x_i}-\bar x£©£¨{y_i}-\bar y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\bar x£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\bar x}^2}}}}}\\{\hat a=\bar y-\hat b\bar x}\end{array}}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®£¨¢ñ£©ÒÑÖª¦ÁΪµÚ¶þÏóÏ޵Ľǣ¬»¯¼ò£º$cos¦Á\sqrt{\frac{1-sin¦Á}{1+sin¦Á}}+sin¦Á\sqrt{\frac{1-cos¦Á}{1+cos¦Á}}$£®
£¨¢ò£©¼ÆËã$cos\frac{25¦Ð}{6}+cos\frac{25¦Ð}{3}+tan£¨{-\frac{25¦Ð}{4}}£©+sin\frac{5¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôlog23=m£¬Ôò4m+8m=36£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¹ý°ë¾¶Îª4µÄÇòO±íÃæÉÏÒ»µãA×÷ÇòOµÄ½ØÃ棬ÈôOAÓë¸Ã½ØÃæËù³ÉµÄ½ÇÊÇ30¡ã£¬Ôò¸Ã½ØÃæµÄÃæ»ýÊÇ12¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®kΪºÎֵʱ£¬Ö±Ïßy=kx+2 ºÍÍÖÔ² 2x2+3y2=6Ïཻ£¨¡¡¡¡£©
A£®$\{k\left|{k£¾\frac{{\sqrt{6}}}{3}}\right.»òk£¼-\frac{{\sqrt{6}}}{3}\}$B£®$\{k\left|{-\frac{{\sqrt{6}}}{3}£¼k£¼\frac{{\sqrt{6}}}{3}}\right.\}$C£®$\{k\left|{k¡Ý\frac{{\sqrt{6}}}{3}}\right.»òk¡Ü-\frac{{\sqrt{6}}}{3}\}$D£®$\{k\left|{-\frac{{\sqrt{6}}}{3}¡Ük¡Ü\frac{{\sqrt{6}}}{3}}\right.\}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸