·ÖÎö £¨1£©ÓÉÖÜÆÚ¹«Ê½¿ÉÇ󦨣¬ÓÉÕýÏÒº¯ÊýµÄÐÔÖÊ¿ÉÇóÖµÓò£®
£¨2£©ÓÉÒÑÖª¼°£¨1£©¿ÉÇósin £¨ $\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{3}$£©£¬½áºÏ·¶Î§x0¡Ê£¨-$\frac{10}{3}$£¬$\frac{2}{3}$£©£¬µÃ $\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{3}$¡Ê£¨-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$£©£¬¿ÉÇócos £¨ $\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{3}$£©£¬¹Êf£¨x0+1£©=2$\sqrt{3}$sin £¨ $\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{4}$+$\frac{¦Ð}{3}$£©=2$\sqrt{3}$sin[£¨$\frac{¦Ð{x}_{0}}{4}$+$\frac{¦Ð}{3}$£©+$\frac{¦Ð}{4}$]ÀûÓÃÁ½½ÇºÍµÄÕýÏÒº¯Êý¹«Ê½¼´¿ÉÇóÖµ£®
£¨3£©¸ù¾Ýº¯Êý±ä»»¹æÂɵõ½Ðµĺ¯Êý½âÎöʽΪ£ºg£¨x£©=sinx£¬x¡Ê[0£¬¦Ð]£¬Áît=g£¨x£©£¬t¡Ê[0£¬1]£¬Ôò2t2-4at+1-a=0£®ÈôҪʹµÃ¹ØÓÚxµÄ·½³ÌÔÚ[0£¬¦Ð]ÉÏÓÐÁ½¸ö²»Í¬µÄ¸ù£¬Ôò¹ØÓÚt µÄ·½³ÌÔÚt¡Ê[0£¬1£©ÉÏÖ»ÓÐΨһ½â£¬¾Ý´ËÇóµÃʵÊýaµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÓÚÕýÈý½ÇÐÎABCµÄ¸ßΪ2$\sqrt{3}$£¬ÔòBC=4£¬
ËùÒÔ£¬º¯Êý$f£¨x£©µÄÖÜÆÚT=4¡Á2=8£¬¼´\frac{2¦Ð}{¦Ø}=8£¬µÃ¦Ø=\frac{¦Ð}{4}$£¬
ËùÒÔ£¬º¯Êý$f£¨x£©µÄÖµÓòΪ[-2\sqrt{3}£¬2\sqrt{3}]$£®
£¨2£©ÒòΪ$f£¨{x_0}£©=\frac{{8\sqrt{3}}}{5}£¬ÓÉ$£¨1£©ÓÐ$f£¨{x_0}£©=2\sqrt{3}sin£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©=\frac{{8\sqrt{3}}}{5}$£¬$¼´sin£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©=\frac{4}{5}$£¬
ÓÉ${x_0}¡Ê£¨-\frac{10}{3}£¬\frac{2}{3}£©£¬Öª\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}¡Ê£¨-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}£©$£¬
ËùÒÔ$cos£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©=\sqrt{1-{{£¨\frac{4}{5}£©}^2}}=\frac{3}{5}$£®
¹Êf£¨x0+1£©=$2\sqrt{3}sin£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{4}+\frac{¦Ð}{3}£©$=$2\sqrt{3}sin[£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©+\frac{¦Ð}{4}]$
$\begin{array}{l}=2\sqrt{3}[sin£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©cos\frac{¦Ð}{4}+cos£¨\frac{{¦Ð{x_0}}}{4}+\frac{¦Ð}{3}£©sin\frac{¦Ð}{4}]\\=2\sqrt{3}£¨\frac{4}{5}¡Á\frac{{\sqrt{2}}}{2}+\frac{3}{5}¡Á\frac{{\sqrt{2}}}{2}£©\end{array}$
=$\frac{{7\sqrt{6}}}{5}$£®
£¨3£©ÓÉÌâ¿ÉÖªg£¨x£©=sinx£¬x¡Ê[0£¬¦Ð]£¬Áît=g£¨x£©£¬t¡Ê[0£¬1]£¬
Ôò2t2-4at+1-a=0£®
ÈôҪʹµÃ¹ØÓÚxµÄ·½³ÌÔÚ[0£¬¦Ð]ÉÏÓÐÁ½¸ö²»Í¬µÄ¸ù£¬Ôò¹ØÓÚt µÄ·½³ÌÔÚt¡Ê[0£¬1£©ÉÏÖ»ÓÐΨһ½â£¬ËùÒÔÓÐÒÔϼ¸ÖÖÇé¿ö
?¢Ùf£¨0£©•f£¨1£©£¼0£¬
½âµÃ$\frac{3}{5}$£¼a£¼1£»
¢Ú¡÷=0£¬
½âµÃa=$\frac{1}{2}$»òa=-1£®
µ±$a=\frac{1}{2}$ʱ£¬$t=\frac{1}{2}$£¬Âú×ãÌâÒ⣻
µ±a=-1ʱ£¬t=-1£¬²»·ûºÏÌâÒ⣬ÉáÈ¥a=-1£®
?µ±t=0ʱ£¬½âµÃa=1£¬´ËʱÁíÒ»¸ö¸ùt=2²»ÔÚ[0£¬1£©ÉÏ£¬ËùÒÔa=1·ûºÏÌâÒ⣮
×ÛÉÏËùÊöaµÄȡֵ·¶Î§ÊÇ$\left\{{a|\frac{3}{5}}\right.£¼a¡Ü1»òa=\frac{1}{2}\left.{\;}\right\}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÓÉy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈ·¶¨Æä½âÎöʽ£¬Èý½Çº¯ÊýµÄ»¯¼òÇóÖµ£¬ÕýÏÒº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6 | B£® | 7 | C£® | 8 | D£® | 9 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| x | 6 | 8 | 10 | 12 |
| y | 2 | 3 | 5 | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\{k\left|{k£¾\frac{{\sqrt{6}}}{3}}\right.»òk£¼-\frac{{\sqrt{6}}}{3}\}$ | B£® | $\{k\left|{-\frac{{\sqrt{6}}}{3}£¼k£¼\frac{{\sqrt{6}}}{3}}\right.\}$ | C£® | $\{k\left|{k¡Ý\frac{{\sqrt{6}}}{3}}\right.»òk¡Ü-\frac{{\sqrt{6}}}{3}\}$ | D£® | $\{k\left|{-\frac{{\sqrt{6}}}{3}¡Ük¡Ü\frac{{\sqrt{6}}}{3}}\right.\}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com