精英家教网 > 高中数学 > 题目详情
2.若log23=m,则4m+8m=36.

分析 根据对数与指数的互化,利用指数的性质和运算法可得答案.

解答 解:∵log23=m,
∴2m=3
∴4m+8m=(2m2+(2m3=32+33=36.
故答案为:36.

点评 本题考查了对数与指数的互化,指数的性质和运算法,属于基础题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=cosx-sinx,f'(x)为函数f(x)的导函数,那么$f'({\frac{π}{2}})$等于(  )
A.-1B.1C.0D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A${\;}_{n}^{2}$=132,则n等于(  )
A.14B.13C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数$f(x)=2\sqrt{3}sin(ωx+\frac{π}{3})(ω>0)$在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若$f({x_0})=\frac{{8\sqrt{3}}}{5}$,且${x_0}∈(-\frac{10}{3},\frac{2}{3})$,求f(x0+1)的值;
(3)将函数y=f(x)的图象上各点的纵坐标变为原来的$\frac{{\sqrt{3}}}{6}$倍,横坐标不变,再将所得图象各点的横坐标变为原来的ω倍,纵坐标不变,最后将所得图象向右平移$\frac{π}{3}$个单位,得到y=g(x)的图象,若关于x的方程2[g(x)]2-4ag(x)+1-a=0在区间[0,π]上有两个不同解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+y2+Dx+Ey+3=0关于直线x+y-1=0对称,半径为$\sqrt{2}$,且圆心C在第二象限.
(Ⅰ)求圆C的方程;
(Ⅱ)不过原点的直线l在x轴、y轴上的截距相等,且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.求值:cos14°cos59°+sin14°sin121°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{x^2}{16}+\frac{y^2}{7}=1$的左、右焦点F1,F2与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的焦点重合.且直线x-y-1=0与双曲线右支相交于点P,则当双曲线离心率最小时的双曲线方程为(  )
A.${x^2}-\frac{y^2}{8}=1$B.$\frac{x^2}{6}-\frac{y^2}{3}=1$C.$\frac{x^2}{7}-\frac{y^2}{2}=1$D.$\frac{x^2}{5}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.凸边形的性质:如果函数f(x)在区间D上的是凸变形,则对于区间D内的任意n个自变量x1,x2,…,xn,有$\frac{{f({x_1})+f({x_2})+…+f({x_n})}}{n}≤f(\frac{{{x_1}+{x_2}+…+{x_n}}}{n})$,当且仅当x1=x2=…=xn时等号成立,已知函数y=sinx上是凸函数,
则在△ABC中,sinA+sinB+sinC的最大值为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算;
(1)cos(α+45°)cos(15°+α)-sin(α+45°)cos(105°+α)
(2)$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{cos{{17}°}}}$.

查看答案和解析>>

同步练习册答案