精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=cosx-sinx,f'(x)为函数f(x)的导函数,那么$f'({\frac{π}{2}})$等于(  )
A.-1B.1C.0D.$-\frac{1}{2}$

分析 先求导,再代值计算即可.

解答 解:f′(x)=-sinx-cosx,
∴f′($\frac{π}{2}$)=-sin$\frac{π}{2}$-cos$\frac{π}{2}$=-1,
故选:A

点评 本题主要考查了导数的运算法则,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow a=({x,1}),\overrightarrow b=({2,-3})$,若$\overrightarrow a∥\overrightarrow b$,则x=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若角α的终边经过点(α,-1),且$tanα=-\frac{1}{2}$,则α=(  )
A.$\sqrt{5}$B.$-\sqrt{5}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.其中角B为锐角.
(1)求B的大小;
(2)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{{e}^{x}-1}{x}$,x≠0.其中e=2.71828…
(1)设h(x)=f(x)+$\frac{1}{x}$,求函数h(x)在[$\frac{1}{2}$,2]上的值域;
(2)证明:对任意正数a,存在正数x,使不等式|f(x)-1|<a成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将正整数排成下表:

则在表中数字2015出现在(  )
A.第44行第78列B.第45行第79列C.第44行第77列D.第45行第77列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow m=({sin({x-\frac{π}{6}}),1}),\overrightarrow n=({cosx,1})$.,
(1)若$\overrightarrow m∥\overrightarrow n$,求tanx的值;
(2)若函数$f(x)=\overrightarrow m•\overrightarrow n$,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等差数列{an}的前n项和Sn,a1+a2=-20,a4+a6=-6,则当Sn取最小值时,n等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若log23=m,则4m+8m=36.

查看答案和解析>>

同步练习册答案