精英家教网 > 高中数学 > 题目详情
7.求值:cos14°cos59°+sin14°sin121°=$\frac{\sqrt{2}}{2}$.

分析 利用诱导公式化简,在根据和与差的公式计算即可.

解答 解:cos14°cos59°+sin14°sin121°=cos14°cos59°+sin14°sin(180°-59°)=cos14°cos59°+sin14°sin59°=cos(59°-14°)=cos45°=$\frac{\sqrt{2}}{2}$.
故答案为$\frac{\sqrt{2}}{2}$.

点评 本题考查了诱导公式化简能力以及和与差的公式计算.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.将正整数排成下表:

则在表中数字2015出现在(  )
A.第44行第78列B.第45行第79列C.第44行第77列D.第45行第77列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx,g(x)=-x2+ax-3,
(1)求函数f(x)的图象在点(1,0)处的切线方程;
(2)求函数f(x)在区间$[t,t+\frac{1}{e}](t>0)$上的最小值;
(3)对一切实数x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(Ⅰ)已知α为第二象限的角,化简:$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$.
(Ⅱ)计算$cos\frac{25π}{6}+cos\frac{25π}{3}+tan({-\frac{25π}{4}})+sin\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若log23=m,则4m+8m=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=lg({\frac{a-x}{3+x}})$为奇函数,
(1)求a的值;
(2)判断并证明函数f(x)的单调性;
(3)是否存在这样的实数k,使f(k-cosθ)+f(cos2θ-k2)≥0对一切θ∈R恒成立,若存在,试求出k取值的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过半径为4的球O表面上一点A作球O的截面,若OA与该截面所成的角是30°,则该截面的面积是12π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,某中学兴趣小组设计的自动小车按下面程序运行:
①由点A出发到达点B或C或D,到达点B,C,D之一就停止;
②每次只向右或向下按路线运行;
③在每个路口向下的概率为$\frac{1}{3}$;
④到达点P时只向下,到达点Q时只向右;
(1)求小车从点A出发经过点M到达点B的概率以及小车从点A出发经过点N到达点C的概率;
(2)若小车到达点B,C,D时,随机变量X分别记为1,2,3,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥O-ABC中,AO⊥平面OBC,且OA=OB=OC=2,∠BOC=60°,点E,F分别是AB,AC的中点,H为EF的中点,过EF的动平面与线段OA交于点A1,与线段OB,OC的延长线分别相交于点B1,C1
(Ⅰ)证明:B1C1⊥平面OAH;
(Ⅱ)当|BB1|=2|OA1|-2时,求二面角A-A1E-F的正弦值.

查看答案和解析>>

同步练习册答案