精英家教网 > 高中数学 > 题目详情
16.如图所示,某中学兴趣小组设计的自动小车按下面程序运行:
①由点A出发到达点B或C或D,到达点B,C,D之一就停止;
②每次只向右或向下按路线运行;
③在每个路口向下的概率为$\frac{1}{3}$;
④到达点P时只向下,到达点Q时只向右;
(1)求小车从点A出发经过点M到达点B的概率以及小车从点A出发经过点N到达点C的概率;
(2)若小车到达点B,C,D时,随机变量X分别记为1,2,3,求X的分布列及数学期望.

分析 (1)由题意得出向下的概率和向右概率,从A过M到B,有两次向下,再有一次向下与一次向右组合,求得概率值,同理可求海宝过点从A经过N到点C的概率;
(2)求出X=1,2,3时相应的概率,从而可求随机变量X的分布列及期望.

解答 解:(1)由题意,向下概率为$\frac{1}{3}$,则向右概率为1-$\frac{1}{3}$=$\frac{2}{3}$;
从A过M到B,先有两次向下,再有一次向下与一次向右组合,
其概率为${(\frac{1}{3})}^{2}$•${C}_{2}^{1}$•$\frac{1}{3}$•$\frac{2}{3}$=$\frac{4}{81}$;
从A过N到C,概率为${C}_{2}^{1}$•$\frac{1}{3}$•$\frac{2}{3}$•${C}_{2}^{1}$•$\frac{1}{3}$•$\frac{2}{3}$=$\frac{16}{81}$;
(2)P(X=1)=($\frac{1}{3}$)3+${C}_{3}^{2}$•($\frac{1}{3}$)2•$\frac{2}{3}$•$\frac{1}{3}$=$\frac{3}{27}$;
P(X=2)=${C}_{4}^{2}$•($\frac{1}{3}$)2•($\frac{2}{3}$)2=$\frac{8}{27}$;
P(X=3)=($\frac{2}{3}$)3+${C}_{3}^{2}$•($\frac{2}{3}$)2•$\frac{1}{3}$•$\frac{2}{3}$=$\frac{16}{27}$,
∴X的分布列为:

X123
P$\frac{3}{27}$$\frac{8}{27}$ 
$\frac{16}{27}$
数学期望为E(X)=1×$\frac{3}{27}$+2×$\frac{8}{27}$+3×$\frac{16}{27}$=$\frac{67}{27}$.

点评 本题考查了等可能事件的概率以及离散型随机变量的分布列和数学期望,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.${({\sqrt{3}x-1})^3}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}$,则(a0+a22-(a1+a32的值为(  )
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.求值:cos14°cos59°+sin14°sin121°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设i是虚数单位,若复数$\frac{a-i}{1+2i}$为纯虚数,则实数a的值是(  )
A.$-\frac{1}{2}$B.0C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.凸边形的性质:如果函数f(x)在区间D上的是凸变形,则对于区间D内的任意n个自变量x1,x2,…,xn,有$\frac{{f({x_1})+f({x_2})+…+f({x_n})}}{n}≤f(\frac{{{x_1}+{x_2}+…+{x_n}}}{n})$,当且仅当x1=x2=…=xn时等号成立,已知函数y=sinx上是凸函数,
则在△ABC中,sinA+sinB+sinC的最大值为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,$AB=\sqrt{3},A={45°},C={105°}$,则BC=(  )
A.2B.$\sqrt{2}$C.$3-\sqrt{3}$D.$3+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程$y=-\sqrt{3-{x^2}}$表示的曲线是(  )
A.-个圆B.一条射线C.半个圆D.一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?并求出该轨迹的焦点和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图如图所示,则该几何体的表面积为 (  )       
A.12B.8+2$\sqrt{3}$C.12+2$\sqrt{3}$D.12+4$\sqrt{3}$

查看答案和解析>>

同步练习册答案