分析 已知f(x)=sinx在区间(0,π)上是凸函数,利用凸函数的性质可得,有$\frac{{f({x_1})+f({x_2})+…+f({x_n})}}{n}≤f(\frac{{{x_1}+{x_2}+…+{x_n}}}{n})$,变形得 sinA+sinB+sinC≤3sin$\frac{π}{3}$问题得到解决.
解答 解:∵f(x)=sinx在区间(0,π)上是凸函数,且A、B、C∈(0,π),
∴$\frac{sinA+sinB+sinC}{3}$≤sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,∴sinA+sinB+sinC≤$\frac{3\sqrt{3}}{2}$,当且仅当A=B=C=$\frac{π}{3}$时,等号成立,
∴△ABC中,sinA+sinB+sinC的最大值为$\frac{3\sqrt{3}}{2}$,
故答案为:$\frac{3\sqrt{3}}{2}$.
点评 本题主要考查新定义,凸函数的性质应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $2\sqrt{2}$ | D. | $-2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{k\left|{k>\frac{{\sqrt{6}}}{3}}\right.或k<-\frac{{\sqrt{6}}}{3}\}$ | B. | $\{k\left|{-\frac{{\sqrt{6}}}{3}<k<\frac{{\sqrt{6}}}{3}}\right.\}$ | C. | $\{k\left|{k≥\frac{{\sqrt{6}}}{3}}\right.或k≤-\frac{{\sqrt{6}}}{3}\}$ | D. | $\{k\left|{-\frac{{\sqrt{6}}}{3}≤k≤\frac{{\sqrt{6}}}{3}}\right.\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com