精英家教网 > 高中数学 > 题目详情
2.已知A${\;}_{n}^{2}$=132,则n等于(  )
A.14B.13C.12D.11

分析 利用排列数的计算公式即可得出.

解答 解:∵A${\;}_{n}^{2}$=132,∴n(n-1)=132=12×11,
解得n=12.
故选:C.

点评 本题考查了排列数的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若角α的终边经过点(α,-1),且$tanα=-\frac{1}{2}$,则α=(  )
A.$\sqrt{5}$B.$-\sqrt{5}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow m=({sin({x-\frac{π}{6}}),1}),\overrightarrow n=({cosx,1})$.,
(1)若$\overrightarrow m∥\overrightarrow n$,求tanx的值;
(2)若函数$f(x)=\overrightarrow m•\overrightarrow n$,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等差数列{an}的前n项和Sn,a1+a2=-20,a4+a6=-6,则当Sn取最小值时,n等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙、丙三位同学完成六道数学自测题,他们及格的概率依次为$\frac{4}{5}$、$\frac{3}{5}$、$\frac{7}{10}$,求:
(1)三人中有且只有两人及格的概率;
(2)三人中至少有一人不及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx,g(x)=-x2+ax-3,
(1)求函数f(x)的图象在点(1,0)处的切线方程;
(2)求函数f(x)在区间$[t,t+\frac{1}{e}](t>0)$上的最小值;
(3)对一切实数x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.银川一中最强大脑社对高中学生的记忆力x和判断力y进行统计分析,得表数据
x681012
y2356
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)试根据已求出的线性回归方程,预测记忆力为9的同学的判断力.
参考公式:$\left\{{\begin{array}{l}{\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\bar x}^2}}}}}\\{\hat a=\bar y-\hat b\bar x}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若log23=m,则4m+8m=36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.化简$\frac{1}{{sin{{15}°}}}-\frac{1}{{cos{{15}°}}}$的结果是(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$2\sqrt{2}$D.$-2\sqrt{2}$

查看答案和解析>>

同步练习册答案