精英家教网 > 高中数学 > 题目详情
17.甲、乙、丙三位同学完成六道数学自测题,他们及格的概率依次为$\frac{4}{5}$、$\frac{3}{5}$、$\frac{7}{10}$,求:
(1)三人中有且只有两人及格的概率;
(2)三人中至少有一人不及格的概率.

分析 (1)设事件A表示“甲及格”,事件B表示“乙及格”,事件C表示“丙及格”,三人中有且只有2人及格的概率为:p1=P(AB$\overline{C}$)+P(A$\overline{B}$C)+P($\overline{A}BC$),由此能求出三人中有且只有两人及格的概率.
(2)“三人中至少有一人不及格”的对立的事件为“三人都及格”,由此利用对立事件的概率计算公式能求出三人中至少有一人不及格的概率.

解答 解:(1)设事件A表示“甲及格”,事件B表示“乙及格”,事件C表示“丙及格”,
则P(A)=$\frac{4}{5}$,P(B)=$\frac{3}{5}$,P(C)=$\frac{7}{10}$,
三人中有且只有2人及格的概率为:
p1=P(AB$\overline{C}$)+P(A$\overline{B}$C)+P($\overline{A}BC$)
=P(A)P(B)P($\overline{C}$)+P(A)P($\overline{B}$)P(C)+P($\overline{A}$)P(B)P(C)
=$\frac{4}{5}×\frac{3}{5}×(1-\frac{7}{10})$+$\frac{4}{5}×(1-\frac{3}{5})×\frac{7}{10}$+(1-$\frac{4}{5}$)×$\frac{3}{5}×\frac{7}{10}$
=$\frac{113}{250}$.
(2)“三人中至少有一人不及格”的对立的事件为“三人都及格”,
三人中至少有一人不及格的概率为:
p2=1-P(ABC)=1-P(A)P(B)P(C)=1-$\frac{4}{5}×\frac{3}{5}×\frac{7}{10}$=$\frac{83}{125}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率加法公式和相互独立事件概率乘法公式、对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=f?($\frac{π}{4}$)cosx+sinx,则f($\frac{3π}{4}$)=(  )
A.$\sqrt{2}$B.$\sqrt{2}$-1C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{(a-1)x+a}{{b{x^2}+c}}$(a,b,c为常数).
(1)当b=1,c=0时,解关于x的不等式f(x)>1;
(2)当b=c>0,a=2时,若f(x)<1对于x>0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}满足an>0,$a_4^2+a_7^2+2{a_4}{a_7}=9$,则其前10项之和为(  )
A.-9B.15C.-15D.±15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\frac{1}{(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i)^{4}}$等于(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A${\;}_{n}^{2}$=132,则n等于(  )
A.14B.13C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的通项公式是${a_n}=\frac{1}{{{{(n+1)}^2}}}$,(n∈N*),记bn=(1-a1)(1-a2)…(1-an
(1)写出数列{bn}的前三项;
(2)猜想数列{bn}通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+y2+Dx+Ey+3=0关于直线x+y-1=0对称,半径为$\sqrt{2}$,且圆心C在第二象限.
(Ⅰ)求圆C的方程;
(Ⅱ)不过原点的直线l在x轴、y轴上的截距相等,且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2x-(x+1)lnx,g(x)=xlnx-ax2-1.
(1)求证:对?x∈(1,+∞),f(x)<2;
(2)若方程g(x)=0有两个根,设两根分别为x1、x2,求证:$\frac{ln{x}_{1}+ln{x}_{2}}{2}$>1+$\frac{2}{\sqrt{{x}_{1}{x}_{2}}}$.

查看答案和解析>>

同步练习册答案