精英家教网 > 高中数学 > 题目详情
5.等差数列{an}满足an>0,$a_4^2+a_7^2+2{a_4}{a_7}=9$,则其前10项之和为(  )
A.-9B.15C.-15D.±15

分析 等差数列{an}满足an>0,$a_4^2+a_7^2+2{a_4}{a_7}=9$,∴$({a}_{4}+{a}_{7})^{2}$=9,解得a4+a7=3=a1+a10.再利用求和公式即可得出.

解答 解:∵等差数列{an}满足an>0,$a_4^2+a_7^2+2{a_4}{a_7}=9$,∴$({a}_{4}+{a}_{7})^{2}$=9,解得a4+a7=3=a1+a10
则其前10项之和=$\frac{10({a}_{1}+{a}_{10})}{2}$=5×3=15.
故选:B.

点评 本题考查了等差数列的求和公式与通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.现有5种不同的颜色要对图形中(如图)的四个部分着色;要求有公共边的两部分不能用同一颜色,则不同的着色方法有180种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{{e}^{x}-1}{x}$,x≠0.其中e=2.71828…
(1)设h(x)=f(x)+$\frac{1}{x}$,求函数h(x)在[$\frac{1}{2}$,2]上的值域;
(2)证明:对任意正数a,存在正数x,使不等式|f(x)-1|<a成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow m=({sin({x-\frac{π}{6}}),1}),\overrightarrow n=({cosx,1})$.,
(1)若$\overrightarrow m∥\overrightarrow n$,求tanx的值;
(2)若函数$f(x)=\overrightarrow m•\overrightarrow n$,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,正方体ABCD-A'B'C'D'的棱长为1,点O是正方形A'B'C'D'的中心,则点O到平面ABC'D'的距离是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等差数列{an}的前n项和Sn,a1+a2=-20,a4+a6=-6,则当Sn取最小值时,n等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙、丙三位同学完成六道数学自测题,他们及格的概率依次为$\frac{4}{5}$、$\frac{3}{5}$、$\frac{7}{10}$,求:
(1)三人中有且只有两人及格的概率;
(2)三人中至少有一人不及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.银川一中最强大脑社对高中学生的记忆力x和判断力y进行统计分析,得表数据
x681012
y2356
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)试根据已求出的线性回归方程,预测记忆力为9的同学的判断力.
参考公式:$\left\{{\begin{array}{l}{\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\bar x}^2}}}}}\\{\hat a=\bar y-\hat b\bar x}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知α是第三象限角,化简$\sqrt{\frac{{1+cos(\frac{9π}{2}-α)}}{1+sin(α-5π)}}-\sqrt{\frac{{1-cos(-\frac{3π}{2}-α)}}{1-sin(α-9π)}}$.

查看答案和解析>>

同步练习册答案