分析 (1)诱导公式化简,再根据和与差的公式求解可得答案.
(2)利用和与差公式把sin47°=sin(30°+17°)带入化简可得答案.
解答 解:(1)由cos(α+45°)cos(15°+α)-sin(α+45°)cos(105°+α)=cos(α+45°)cos(15°+α)-sin(α+45°)cos(90°+15°+α)=cos(α+45°)cos(15°+α)+sin(α+45°)sin(15°+α)=cos(α+45°-α-15°)=cos30°=$\frac{\sqrt{3}}{2}$.
(2)$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{cos{{17}°}}}$=$\frac{sin(30°+17°)-sin17°cos30°}{cos17°}$=$\frac{sin30°cos17°}{cos17°}=sin30°=\frac{1}{2}$
点评 本题考查了诱导公式化简,和与差的公式的计算,计较基础.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $2\sqrt{2}$ | D. | $-2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{k\left|{k>\frac{{\sqrt{6}}}{3}}\right.或k<-\frac{{\sqrt{6}}}{3}\}$ | B. | $\{k\left|{-\frac{{\sqrt{6}}}{3}<k<\frac{{\sqrt{6}}}{3}}\right.\}$ | C. | $\{k\left|{k≥\frac{{\sqrt{6}}}{3}}\right.或k≤-\frac{{\sqrt{6}}}{3}\}$ | D. | $\{k\left|{-\frac{{\sqrt{6}}}{3}≤k≤\frac{{\sqrt{6}}}{3}}\right.\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b<c<a | B. | a<b<c | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com