精英家教网 > 高中数学 > 题目详情
7.已知f(x)=2f′(1)x+lnx,则f′(2)=(  )
A.-$\frac{3}{2}$B.-1C.1D.$\frac{3}{2}$

分析 根据导数的运算法则求导即可.

解答 解:∵f(x)=2f′(1)x+lnx,
∴f′(x)=2f′(1)+$\frac{1}{x}$,
令x=1时,
则f′(1)=2f′(1)+1,
∴f′(1)=-1,
∴f′(2)=2×(-1)+$\frac{1}{2}$=-$\frac{3}{2}$,
故选:A

点评 本题考查导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+y2+Dx+Ey+3=0关于直线x+y-1=0对称,半径为$\sqrt{2}$,且圆心C在第二象限.
(Ⅰ)求圆C的方程;
(Ⅱ)不过原点的直线l在x轴、y轴上的截距相等,且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2x-(x+1)lnx,g(x)=xlnx-ax2-1.
(1)求证:对?x∈(1,+∞),f(x)<2;
(2)若方程g(x)=0有两个根,设两根分别为x1、x2,求证:$\frac{ln{x}_{1}+ln{x}_{2}}{2}$>1+$\frac{2}{\sqrt{{x}_{1}{x}_{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a,b∈R,i是虚数单位,若i(1-ai)=1-bi,则a-b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设M是椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上的一点,F1,F2为焦点,且$∠{F_1}M{F_2}=\frac{π}{3}$,则△MF1F2的面积为(  )
A.3B.$16(2+\sqrt{3})$C.$16(2-\sqrt{3})$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算;
(1)cos(α+45°)cos(15°+α)-sin(α+45°)cos(105°+α)
(2)$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{cos{{17}°}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.参数方程$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}$(θ为参数)表示的曲线是(  )
A.以$({±\sqrt{7},0})$为焦点的椭圆B.以(±4,0)为焦点的椭圆
C.离心率为$\frac{{\sqrt{7}}}{5}$的椭圆D.离心率为$\frac{3}{5}$的椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果$\frac{x^2}{4}+\frac{y^2}{m}=1$表示焦点在x轴的椭圆,则实数m的取值范围是(  )
A.(0,4]B.(0,4)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$f(x)=\frac{1}{2}{x^2}-lnx$的单调减区间(  )
A.(-1,1]B.(0,1]C.(1,+∞)D.(0,+∞)

查看答案和解析>>

同步练习册答案