精英家教网 > 高中数学 > 题目详情
已知平面α截一球面得圆,过圆心且与α成二面角的平面β截该球面得圆.若该球面的半径为4,圆的面积为4,则圆的面积为
A.7B.9C.11D.13
D
如图所示,由圆的面积为4知球心到圆的距离,在中,, ∴,故圆的半径,∴圆的面积为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,平面,且,点是棱的中点,点在棱上移动.
(Ⅰ)当点的中点时,试判断直线与平面的关系,并说明理由;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)在平面α内有△ABC,在平面α外有点S,斜线SA⊥AC,SB⊥BC,且
斜线SA、SB与平面α所成角相等。
(1)求证:AC=BC
(2)又设点S到α的距离为4cm,AC⊥BC且AB=6cm,求S与AB的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱,的中点,作于点
(Ⅰ)证明
(Ⅱ)证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面截一球面得圆,过圆心且与二面角的平面截该球面得圆,若该球面的半径为4,圆的面积为,则圆的面积为
(A)          (B)           (c)            (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点。

(1)求证:AC⊥DE;
(2)若PB与平面ABCD所成角为450,E是PB上的中点。
求三棱锥P-AED的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个平面截一个球得到截面面积为的圆面,球心到这个平面的距离是,则该球的表面积是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确的是     (    )
A.空间三点可以确定一个平面B.三角形一定是平面图形
C.若点A,B,C,D既在平面a内,又在平面b内,则平面a与平面b重合
D.四条边都相等的四边形是平面图形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正四棱柱ABCDA1B1C1D1,底面边长为1,侧棱长为2,EBB1中点,则异面直线AD1A1E所成的角为
A.arccosB.arcsin
C.90°D.arccos

查看答案和解析>>

同步练习册答案