精英家教网 > 高中数学 > 题目详情

已知:函数f(x)=2ax2+2x-1-a在区间[-1,1]上有且只有一个零点,求:实数a的取值.

解:1°当a=0时,x=满足题意
2°f(x)=2ax2+2x-1-a是二次函数,则a≠0,对称轴为x=
①△=0时不成立
②△>0时
当a>0时开口向上∴,无解;
当a<0时开口向下∴,解得-1<a<0
∴实数a的取值是-1<a≤0.
分析:先确定对称轴属于区间[-1,1],函数f(x)有唯一解时△=0时不成立;当△大于零0时,分开口向上和向下两种情况讨论.
点评:本题主要考查函数零点问题.注意零点不是点,是函数f(x)=0时x的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(0,+∞)上是减函数,f(1)=0,又有函数g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为(-1,1),当x∈(0,1)时,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在(0,1)上的单调性,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xa的图象过点(
1
2
2
2
)
,则f(x)在(0,+∞)单调递

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)在区间(-b,-a)上仍是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=x3-6x2+3x+t,t∈R.
(1)①证明:a3-b3=(a-b)(a2+ab+b2
②求函数f(x)两个极值点所对应的图象上两点之间的距离;
(2)设函数g(x)=exf(x)有三个不同的极值点,求t的取值范围.

查看答案和解析>>

同步练习册答案