精英家教网 > 高中数学 > 题目详情
设m,n∈R,定义在区间[m,n]上的函数f(x)=log2(4-|x|)的值域是[0,2],若关于t的方程(
1
2
|t|+m+1=0(t∈R)有实数解,则m+n的取值范围是
 
考点:函数的零点,函数的值域
专题:计算题,函数的性质及应用
分析:由函数f(x)=log2(4-|x|)的值域是[0,2],可解得m=-3,0≤n≤3,或-3≤m≤0,n=3;又由关于t的方程(
1
2
|t|+m+1=0(t∈R)有实数解可解得-2≤m<-1,则n=3,从而求m+n的取值范围.
解答: 解:∵函数f(x)=log2(4-|x|)的值域是[0,2],
∴1≤4-|x|≤4,
∴0≤|x|≤3,
∴m=-3,0≤n≤3,或-3≤m≤0,n=3;
又∵关于t的方程(
1
2
|t|+m+1=0(t∈R)有实数解,
∴m=-((
1
2
|t|+1),
∵1<(
1
2
|t|+m+1≤2,
∴-2≤m<-1,
则n=3,
则1≤m+n<2,
即答案为:[1,2).
点评:本题考查了函数的定义域的确定,同时考查了方程与函数的转化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
2
-2x
的定义域是(  )
A、(-∞,-1]
B、(-∞,0)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx(a,b∈R)的图象过点p(1,-11),且在点P处的切线斜率为-12.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log0.5(4x-3)
的定义域为A,函数g(x)=2x(-1≤x≤m)的值域为B.
(1)当m=1时,求A∩B;
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个圆锥的侧面展开图的圆心角为300°,高为2
11
,求圆锥的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为完美函数.在下列四个函数中,完美函数是(  )
A、f(x)=
1
x
B、f(x)=|x|
C、f(x)=2x
D、f(x)=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a4+a7+2a10+a13+a16=30,则其前19项和S19=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x
,x≥2
(x-1)2,x<2
,若关于x的方程f(x)=k有两个不同的实根,则数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3-ax,g(x)=bx2+2b-1.
(1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值;
(2)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]内的最小值.

查看答案和解析>>

同步练习册答案