已知数列{an}成等比数列,且an>0.
(1)若a2-a1=8,a3=m.①当m=48时,求数列{an}的通项公式;②若数列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.
(1)见解析(2)32
【解析】设公比为q,则由题意,得q>0.
(1)①由a2-a1=8,a3=m=48,得
解之,得或
所以数列{an}的通项公式为
an=8(2-)(3+)n-1,或an=8(2+)(3-)n-1.
②要使满足条件的数列{an}是唯一的,即关于a1与q的方程组有唯一正数解,即方程8q2-mq+m=0有唯一解.
由Δ=m2-32m=0,a3=m>0,所以m=32,此时q=2.
经检验,当m=32时,数列{an}唯一,其通项公式是an=2n+2.
(2)由a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,
得a1(qk-1)(qk-1+qk-2+…+1)=8,且q>1.
a2k+1+a2k+2+…+a3k=a1q2k(qk-1+qk-2+…+1)==8
≥32,
当且仅当qk-1=,即q=,a1=8(-1)时,
a2k+1+a2k+2+…+a3k的最小值为32
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测4练习卷(解析版) 题型:填空题
设F是双曲线=1的右焦点,双曲线两条渐近线分别为l1,l2,过F作直线l1的垂线,分别交l1,l2于A、B两点.若OA,AB,OB成等差数列,且向量与同向,则双曲线离心率e的大小为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测2练习卷(解析版) 题型:填空题
△ABC中,a,b,c分别是角A,B,C的对边,向量m=(2sin B,2-cos 2B),n=,m⊥n,∠B=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图,下列关于函数f(x)的四个命题:
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.其中真命题的个数是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
已知定义在R上的函数f(x)的图象关于原点对称,其最小正周期为4,且x∈(0,2)时,f(x)=log2(1+3x),则f(2 015)=______.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用9练习卷(解析版) 题型:填空题
设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用8练习卷(解析版) 题型:解答题
已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).
(1)若m∥n,求证:△ABC为等腰三角形;
(2)若m⊥p,边长c=2,C=,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用7练习卷(解析版) 题型:填空题
在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C等于________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com