精英家教网 > 高中数学 > 题目详情

已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.

(1)求异面直线所成角的余弦值;
(2)求二面角的正弦值;
(3)求此几何体的体积的大小

(1)异面直线所成的角的余弦值为
(2)二面角的的正弦值为
(3)几何体的体积为16.

解析试题分析:(1)先确定几何体中的棱长, ,通过取的中点,连结
,∴或其补角即为异面直线所成的角. 在中即可解得的余弦值.
(2) 因为二面角的棱为,可通过三垂线法找二面角,由已知平面,过,连.可得平面,从而,∴为二面角的平面角. 在中可解得角的正弦值.
(3)该几何体是以为顶点,为高的,为底的四棱锥,所以
此外也可以以为原点,以所在直线为轴建立空间直角坐标系来解答.
试题解析:(1)取的中点是,连结
,∴或其补角即为异面直线所成的角.
中,.∴
∴异面直线所成的角的余弦值为
(2)因为平面,过,连
可得平面,从而
为二面角的平面角. 
中,
.∴
∴二面角的的正弦值为
(3),∴几何体的体积为16.
方法2:(1)以为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.
则A(4,0,0),B(0,4,0),D(0,4,2),E(0,0,4)
,∴
∴异面直线所成的角的余弦值为
(2)平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直三棱柱中,分别是的中点.

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面,四边形是矩形,,点分别是的中点.

(Ⅰ)求三棱锥的体积;
(Ⅱ)求证:平面
(Ⅲ)若点为线段中点,求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体的棱长为.

(1)求异面直线所成角的大小;
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为正三角形,且侧面AA1C1C是边长为2的正方形,E是的中点,F在棱CC1上。

(1)当CF时,求多面体ABCFA1的体积;
(2)当点F使得A1F+BF最小时,判断直线AE与A1F是否垂直,并证明的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形分别是上的点,.沿将梯形翻折,使平面⊥平面(如图).的中点.

(1)当时,求证: ;
(2)当变化时,求三棱锥体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点

(Ⅰ)证明:BC1//平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(Ⅰ)求证:EM∥平面ABC;
(Ⅱ)求出该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥中,是正方形,E是的中点,

(1)若,求 PC与面AC所成的角
(2) 求证:平面
(3) 求证:平面PBC⊥平面PCD

查看答案和解析>>

同步练习册答案