分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值和最小值即可;
(2)求出g(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.
解答 解:(1)f(x)=x3-3x2-9x,
f′(x)=3x2-6x-9=3(x2-2x-3)=3(x-3)(x+1),
令f′(x)>0,解得:x>3或x<-1,
令f′(x)<0,解得:-1<x<3,
∴f(x)在[-4,-1)递增,在(-1,3)递减,在(3,4]递增,
而f(-4)=-76,f(-1)=5,f(3)=-27,f(4)=-30,
∴f(x)min=f(-4)=-76,f(x)max=f(-1)=5,
(2)$g(x)=\frac{1}{2}{x^2}+4x-5lnx$,定义域是(0,+∞),
g′(x)=x+4-$\frac{5}{x}$=$\frac{(x+5)(x-1)}{x}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,
∴g(x)在(0,1)递减,在(1,+∞)递增,
∴$x=1时f(x)有极小值f(1)=\frac{9}{2},f(x)无极大值$.
点评 本题考查了函数的单调性、最值、极值问题,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 椭圆的一部分 | B. | 双曲线的一部分 | C. | 抛物线的一部分 | D. | 直线的一部分 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com