精英家教网 > 高中数学 > 题目详情
6.在(x+y)2(2x+y)3的展开式中,x2y3的系数为25.

分析 利用二项展开式的通项公式,可得结论.

解答 解:在(x+y)2(2x+y)3的展开式中,x2y3的系数为1+2•${C}_{3}^{2}•2$+${C}_{3}^{1}•{2}^{2}$=25
故答案为:25.

点评 二项展开式的通项公式是解决二项展开式的特定项问题的工具.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知方程x2+y2-6x+2y+m=0.
(1)若此方程表示圆,求实数m的取值范围;
(2)若已知(1)中的圆与直线x+2y-2=0相交于A,B两点,并且以线段AB为直径的圆经过坐标原点O,求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某三棱锥的三视图如图所示,该三棱锥的最长棱的棱长为(  )
A.$\sqrt{61}$B.$\sqrt{41}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.利用图象解不等式:
(1)sin2x<-$\frac{1}{2}$;
(2)cos$\frac{x}{4}$≥$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={(x,y)|$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{x+y≥2}\end{array}\right.$},B={(x,y)|(x+1)2+(y+1)2≤$\frac{4}{5}$},设P(m,n)∈A,Q(s,t)∈B,则$\frac{n-t}{m-s}$的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l与l1:x-3y+6=0平行,且l与两坐标轴围成的三角形的面积为8,则直线l的方程为x-3y+4$\sqrt{3}$=0.或x-3y-4$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设$\overrightarrow{OA}$=(1,1),$\overrightarrow{OB}$=(3,0),$\overrightarrow{OC}$=(3,5)其中O为坐标原点.
(1)求证:$\overrightarrow{AB}$⊥$\overrightarrow{AC}$;
(2)求三角形ABC的面积;
(3)对于向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),定义一种运算:将x1y1-x2y2的绝对值记为f($\overrightarrow{a}$•$\overrightarrow{b}$),试计算f($\overrightarrow{AB}$•$\overrightarrow{AC}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC内接于以O为圆心的圆O,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$-5$\overrightarrow{OC}$=$\overrightarrow{0}$.则∠C=135°.若AB=1,求$\overrightarrow{OC}$•$\overrightarrow{AB}$=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=3+\sqrt{10}cosα}\\{y=1+\sqrt{10}sinα}\end{array}\right.$(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程,并说明其表示什么轨迹.
(2)若直线的极坐标方程为sinθ-cosθ=$\frac{1}{ρ}$,求直线被曲线C截得的弦长.

查看答案和解析>>

同步练习册答案