精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow{a}$=(1,1-cosθ),$\overrightarrow{b}$=(1+cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则锐角θ=$\frac{π}{4}$.

分析 根据向量平行的坐标公式进行化简求解即可.

解答 解:∵$\overrightarrow{a}$=(1,1-cosθ),$\overrightarrow{b}$=(1+cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴(1-cosθ)(1+cosθ)-$\frac{1}{2}$=0,
即1-cos2θ-$\frac{1}{2}$=0,
即cos2θ=$\frac{1}{2}$,
∵θ为锐角,∴cosθ=$\frac{\sqrt{2}}{2}$,
则θ=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.

点评 本题主要考查向量平行的坐标公式的应用以及三角函数函数求值,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知两个非零向量$\overrightarrow{{e}_{1}}$和$\overrightarrow{{e}_{2}}$不共线,如果$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=6$\overrightarrow{{e}_{1}}$+23$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=4$\overrightarrow{{e}_{1}}$-8$\overrightarrow{{e}_{2}}$,求证:A,B,D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.复数z为纯虚数,若(1+i)•z=a+i(i为虚数单位),则实数a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b-c=$\frac{1}{4}$a,2sinB=3sinC,则cosA的值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某同学利用图形计算器研究教材中一例问题“设点A、B的坐标分别为(-5,0)、(5,0),直线AM、BM相交于M,且它们的斜率之积为$-\frac{4}{9}$.求点M的轨迹方程”时,将其中的已知条件“斜率之积为$-\frac{4}{9}$”拓展为“斜率之积为常数k(k≠0)”之后,进行了如图所示的作图探究:

参考该同学的探究,下列结论错误的是(  )
A.k>0时,点M的轨迹为焦点在x轴的双曲线(不含与x轴的交点)
B.-1<k<0时,点M的轨迹为焦点在x轴的椭圆(不含与x轴的交点)
C.k<-1时,点M的轨迹为焦点在y轴的椭圆(不含与x轴的交点)
D.k<0时,点M的轨迹为椭圆(不含与x轴的交点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)若F为PC的中点,求证:PC⊥平面AEF;
(2)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.m,n是空间两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
①m⊥α,n∥β,α∥β⇒m⊥n;②m⊥n,α∥β,m⊥α⇒n∥β;
③m⊥n,α∥β,m∥α⇒n⊥β;④m⊥α,m∥n,α∥β⇒n⊥β;(  )
A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A(x,y),B(2x+y,3x+4y)在直线l上,则l的方程为3x′-y′+y-3x=0,(x,y为已知常数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的直观图如图所示,该几何体的正视图和侧视图可能正确的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案