分析 (1)求出函数的导数,令导数大于0,可得增区间,令导数小于0,可得减区间;
(2)求出导数,求得切线的斜率和切点,由点斜式方程,可得切线方程.
解答 解:(1)函数f(x)=$\frac{1}{2}$x2-2lnx的导数为f′(x)=x-$\frac{2}{x}$(x>0),
当x>$\sqrt{2}$时,f′(x)>0,f(x)递增;
当0<x<$\sqrt{2}$时,f′(x)<0,f(x)递减.
则f(x)的增区间为($\sqrt{2}$,+∞),减区间为(0,$\sqrt{2}$);
(2)f′(x)=x-$\frac{2}{x}$(x>0),则f′(2)=2-1=1,
则切线的斜率为k=1,切点为(2,2-2ln2),
即有切线方程为y-2+2ln2=x-2,
即为x-y-2ln2=0.
点评 本题考查导数的运用:求切线方程和单调区间,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | R | B. | [-$\frac{1}{3}$,+∞) | C. | (-$\frac{1}{3}$,+∞) | D. | (-∞,-$\frac{1}{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com