精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{1}{2}$x2-2lnx,求:
(1)此函数的单调区间;
(2)此函数图象在x=2处的切线方程.

分析 (1)求出函数的导数,令导数大于0,可得增区间,令导数小于0,可得减区间;
(2)求出导数,求得切线的斜率和切点,由点斜式方程,可得切线方程.

解答 解:(1)函数f(x)=$\frac{1}{2}$x2-2lnx的导数为f′(x)=x-$\frac{2}{x}$(x>0),
当x>$\sqrt{2}$时,f′(x)>0,f(x)递增;
当0<x<$\sqrt{2}$时,f′(x)<0,f(x)递减.
则f(x)的增区间为($\sqrt{2}$,+∞),减区间为(0,$\sqrt{2}$);
(2)f′(x)=x-$\frac{2}{x}$(x>0),则f′(2)=2-1=1,
则切线的斜率为k=1,切点为(2,2-2ln2),
即有切线方程为y-2+2ln2=x-2,
即为x-y-2ln2=0.

点评 本题考查导数的运用:求切线方程和单调区间,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知点M(2,3),点P在y轴上运动,点Q在圆C:(x-1)2+(y+2)2=4上运动,则|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(-2,5),求|$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+lg(3x+1)的定义域是(-$\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:sin2010°+125${\;}^{\frac{1}{3}}$-(-$\frac{2}{3}$)0-log28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx,a>1.
(1)曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)的单调性;
(3)证明:若a<5,则对任意x1,x2∈(0,+∞),x1≠x2,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x2-2)的定义域是[1,+∞),求函数f($\frac{x}{2}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合A={x|x2-4x=0},B={x|ax2-2x+8=0},A∩B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知区间[-a,2a+1),则实数的a的取值范围是(  )
A.RB.[-$\frac{1}{3}$,+∞)C.(-$\frac{1}{3}$,+∞)D.(-∞,-$\frac{1}{3}$)

查看答案和解析>>

同步练习册答案