精英家教网 > 高中数学 > 题目详情
9.已知函数f(x2-2)的定义域是[1,+∞),求函数f($\frac{x}{2}$)的定义域.

分析 根据复合函数定义域之间的关系进行求解.

解答 解:∵函数f(x2-2)的定义域是[1,+∞),
∴x≥1,
则x2-2≥-1,
即函数f(x)的定义域为{x|x≥-1},
由$\frac{x}{2}$≥-1,
得x≥-2,
即函数f($\frac{x}{2}$)的定义域是{x|x≥-2}.

点评 本题主要考查函数的定义域的求解,要求熟练掌握复合函数定义域之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知α为第三象限角,且f(α)=$\frac{sin(π-α)cos(2π-α)•tan(-α+\frac{3π}{2})•tanα}{sin(π+α)}$,化简f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A={0,1},B={x|x⊆A},则A⊆B(用∈,∉,⊆,?填空).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2-2lnx,求:
(1)此函数的单调区间;
(2)此函数图象在x=2处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={y|y=x2-2x,x∈R},B={y|y=-x2+2x,x∈R}.
(1)求集合A,B;
(2)若集合C={x|y=$\sqrt{1-x}$},求A∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)定义在R上,常数a≠0,下列正确的命题个数是(  )
①若f(a+x)=f(a-x),则函数y=f(x)的对称轴是直线x=a;
②函数y=f(x+a)和y=f(a-x)的对称轴是x=0;
③若f(a-x)=f(x-a),则函数y=f(x)的对称轴是x=0;
④函数y=f(x-a)和y=f(a-x)的图象关于直线x=a对称.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)如果函数g(x)=lnx+ax2-(3a+1)x+(2a+1)(a∈R)的图象在点(1,b)处的切线为水平直线,求点(1,b)处的切线方程,并探究g(x)是否存在最小值;
(2)记g(x)=lnx+ax2-(3a+1)x+(2a+1)(a∈R),对于任意实数x1,x2 ∈(0,1),且x1≠x2 ,$\frac{g({x}_{1})+g({x}_{2})}{2}$<g($\frac{{x}_{1}+{x}_{2}}{2}$)恒成立,求实数a的取值范围;
(3)在(2)成立的条件下,是否可能存在实数a,使其满足:对于任意实数x1,x2 ∈(1,+∞)且x1≠x2 ,$\frac{g({x}_{1})+g({x}_{2})}{2}$<g($\frac{{x}_{1}+{x}_{2}}{2}$)也恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f($\frac{a+2b}{3}$)=$\frac{f(a)+2f(b)}{3}$且f(1)=1,f(4)=7,则f(2014)=4027.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义在R上的函数f(x)的图象关于点(-$\frac{3}{4}$,0)成中心对称,对任意实数x都有f(x)=-f(x+$\frac{3}{2}$),且f(-1)=1,f(0)=-2,则f(1)+f(2)+…+f(2016)的值为0.

查看答案和解析>>

同步练习册答案