精英家教网 > 高中数学 > 题目详情
4.已知集合A={y|y=x2-2x,x∈R},B={y|y=-x2+2x,x∈R}.
(1)求集合A,B;
(2)若集合C={x|y=$\sqrt{1-x}$},求A∩C.

分析 (1)利用配方法求出二次函数的值域化简A,B;
(2)求出函数的定义域化简集合C,再由交集运算得答案.

解答 解:(1)∵y=x2-2x=(x-1)2-1≥-1,∴A={y|y=x2-2x,x∈R}=[-1,+∞);
∵y=-x2+2x=-(x-1)2+1≤1,∴B={y|y=-x2+2x,x∈R}=(-∞,1];
(2)由1-x≥0,得x≤1.
∴C={x|y=$\sqrt{1-x}$}=(-∞,1],
∴A∩C=[-1,+∞)∩(-∞,1]=[-1,1].

点评 本题考查交集及其运算,考查了函数的定义域及其值域的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设函数f(x)是定义在R上的奇函数,则下列结论中一定正确的是(  )
A.函数f(x2)+x2是奇函数B.函数[f(x)]2+|x|不是偶函数
C.函数x2f(x)是奇函数D.函数f(x)+x3不是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.f(x)=$\frac{x-3}{m{x}^{2}+4mx+3}$的定义域x∈R,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:sin2010°+125${\;}^{\frac{1}{3}}$-(-$\frac{2}{3}$)0-log28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设等差数列{an}的公差为d(d≠0),Sn为数列{an}的前n项和,已知$\frac{1}{3}$S3与$\frac{1}{4}$S4的等比中项为$\frac{1}{5}$S5,等差中项为1,若数列{an}的项a3,a4,ak恰好构成等比数列{bn}的前三项,求k的值及等比数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x2-2)的定义域是[1,+∞),求函数f($\frac{x}{2}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知倾斜角为α的直线l与直线x-2y+2=0平行,则tanα的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知一族集合A1,A2,…,An具有性质:
(1)每个Ai含有30个元素;
(2)对每一对i,j:1≤i<j≤n,Ai∩Aj都是单元集;
(3)A1∩A2∩…∩An=∅.
求使这样的集合族存在的最大的正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设lga+lgb=2lg(a-2b),求log4$\frac{a}{b}$.

查看答案和解析>>

同步练习册答案