精英家教网 > 高中数学 > 题目详情

函数f(x)=|x2-a|在区间[-1,1]上的最大值M(a)的最小值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    1
  4. D.
    2
B
分析:由题意可得函数f(x)为偶函数,因此讨论M(a)的值域只需在x∈[0,1]这一范围内进行,结合二次函数的单调性及a的正负及1的大小分类讨论求解M(a)
解答:由题意可得函数f(x)为偶函数,因此讨论M(a)的值域只需在x∈[0,1]这一范围内进行; 1>当0<a<1时,则
当a≤0时,函数f(x)在[0,1]单调递增,M(a)=f(1)=|1-a|=1-a≥1
当a>0时,函数f(x)在[0,]上单调递减,在[,1]上单调递增
所以f(x)在[0,]内的最大值为f(0)=a,而f(x)在[,1]上的最大值为f(1)=1-a,
由f(1)>f(0)得1-a>a,即0<a<
当a∈(0,)时,M(a)=f(1)=1-a,
同理,当a∈[,1)时,M(a)=f(0)=a
当a≥1时,函数在[0,1]上为减函数,所以M(a)=f(0)=a
当a≤0时,f(x)=|x2-a|=x2-a,在[0,1]上为增函数,所以M(a)=f(1)=1-a
综上,M(a)=1-a,a<; M(a)=a,a≥
所以M(a)在[0,]上为减函数且在[,1]为增函数
综上易得M(a)的最小值为M()=
故选B
点评:本题主要考查了偶函数的性质的应用,其实由分析可得M(a)=f(0)或f(1),所以可直接通过比较f(0)与f(1)的大小得出M(a)的解析式从而求解
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案