精英家教网 > 高中数学 > 题目详情

【题目】数列{an}中,an+2﹣2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求证:{an+1﹣an}是等差数列;
(2)求数列{ }的前n项和Sn

【答案】
(1)证明:令cn=an+1﹣an

则cn+1﹣cn=(an+2﹣an+1)﹣(an+1﹣an)=an+2﹣2an+1+an=1(常数),

c1=a2﹣a1,=2,

故{an+1﹣an}是以2为首项,1为公差的等差数列


(2)解:由(1)知cn=n+1,即an+1﹣an=n+1,

于是an=(an﹣an1)﹣(an1﹣an2)+…+(a2﹣a1)+a1=

=n+(n﹣1)+…+2+1=

= =2( ).

∴Sn=2(1﹣ )+2( )+2( ﹣)+…+2(

=2(1﹣

=


【解析】(1)令cn=an+1﹣an , 通过cn+1﹣cn=1,说明{an+1﹣an}是以2为首项,1为公差的等差数列.(2)由(1)知cn=n+1,求出an , 化简 = =2( ).利用裂项求和求解即可.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,Sn为其前n项和,若a2 , a3 , a6成等比数列,且a10=﹣17,则 的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 R上的奇函数, ,且对任意 都有 成立,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|+|x﹣3|.
(1)解关于x的不等式f(x)﹣5≥x;
(2)设m,n∈{y|y=f(x)},试比较mn+4与2(m+n)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy 中,直线l的参数方程为 ,(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ. (Ⅰ)求圆C在直角坐标系中的方程;
(Ⅱ)若圆C与直线l相切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程是 (α为参数)
(1)将C的参数方程化为普通方程;
(2)在直角坐标系xOy中,P(0,2),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcosθ+ ρsinθ+2 =0,Q为C上的动点,求线段PQ的中点M到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中, ,点D在线段BC上.
(1)当BD=AD时,求 的值;
(2)若AD是∠A的平分线, ,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在Rt△AOB中, ,AB边上的高线为OD,点E位于线段OD上,若 ,则向量 在向量 上的投影为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.

查看答案和解析>>

同步练习册答案